NCS-TT106F FOUNDATION FIELDBUS series Intelligent Temperature Transmitter User Manual

MICROCYBER _____

Waring

- 1. It is forbidden for users to disassemble the temperature module by themselves.
- 2. Please check if the supply voltage of temperature transmitter meets the power supply voltage requirements in the manual.

Version: V1.0

Disclaimer

The contents of this manual have been checked to confirm the consistency of the hardware and software described. Since errors cannot be completely ruled out, absolute consistency cannot be guaranteed. However, we will regularly check the data in this manual and make necessary corrections in subsequent versions. Any suggestions for improvement are welcome.

Microcyber Corporation 2020

Technical data is subject to change.

MICROCYBER ___

Company Introduction

Microcyber Corporation, established as a high-tech enterprise by the Shenyang Institute of Automation Chinese Academy of Sciences, mainly engages in advanced industrial control systems, equipments, instruments and chips for industrial process automation control solutions in the research, development, production and application. Microcyber undertakes a number of national scientific and technical key task and "863" project, and has Liaoning Province networked control systems engineering research center.

Microcyber successfully developed the FF H1 fieldbus protocol stack which is number one to be approved internationally in China, and the Industrial Ethernet Protocol(HSE) which is number one to be approved in China, and the domestic first fieldbus instrument which has a function of national-level intrinsically safe explosion--proof and safety barrier. Also Microcyber participated in the drafting of the domestic first Ethernet-based industrial automation protocol standards (Ethernet for Plant Automation, EPA). As a result, serial products are composed of configuration, control software, embedded software, control system, instrument chip to the OEM board, and make Microcyber be an industrial automation products provider in full range, and also further Microcyber's leading position in the field of fieldbus technology.

Microcyber is the member of FieldComm Group(FCG) and Profibus National Organization (PNO) .

Microcyber passes the Authentication of ISO 9001 Quality System, and has an outstanding innovative R&D team, plentiful practical experiences of design of the Automatic engineering, a leading product series, a huge market network, a strict quality management system and an excellent enterprise culture. All these further a solid foundation of entrepreneurship and sustainable development for Microcyber.

Carrying the ideals of employees, creating customer value and promoting enterprise development.

CATALOGUE

1		OVERVIEW	1
2		TEMPERATURE TRANSMITTER INSTALLATION	2
	2.1	DIMENSIONS	2
	2.2	INSTALLATION	2
	2.3	WIRING	4
3		FOUNDATION FIELDBUS PROTOCOL TEMPERATURE TRANSMITTER CONFIGURATION	5
	3.1	TOPOLOGY CONNECTION	5
	3.2	FUNCTION BLOCK	6
	3.3	TRANSDUCER BLOCK CONFIGURATION EXAMPLE	6
	3.3.1	Connecting a resistance sensor	6
	3.3.2	Connect RTD thermal resistance sensor	7
	3.3.3	Connect-/ + 100mV signal sensor	7
	3.3.4	Connect TC Thermocouple Sensor	7
	3.3.5	Custom TC thermocouple sensor	7
	3.3.6	Custom RTD thermal resistance sensor	8
	3.4	FUNCTION CONFIGURATION	8
	3.4.1	Setting up the configuration environment	9
	3.4.2	Import DD file	9
	3.4.3	Device online detection	10
	3.4.4	Sensor configuration	10
	3.4.5	Two-wire zero calibration configuration	11
	3.4.6	Two-point linearization calibration	12
	3.4.7	Multipoint linearization calibration	13
	3.4.8	Enabling cold junction temperature compensation	14
	3.5	FUNCTION BLOCK CONFIGURATION	15
4		MAINTENANCE	20
5		TECHNICAL SPECIFICATIONS	21
	5.1	BASIC PARAMETERS	21
	5.2	THERMAL RESISTANCE TECHNICAL INDEX	21
	5.3	THERMOCOUPLE TECHNICAL INDICATORS	22
	5.4	Physical characteristics	22

1 Overview

NCS-TT106F intelligent temperature transmitter adopts field bus technology, is a new generation of intelligent temperature transmitter, is an indispensable field device in process control. The device integrates a wealth of functional modules, which can achieve both general detection functions and complex control strategies.

NCS-TT106F adopts digital technology and can be applied to a variety of thermal resistance and thermocouple sensors. It has a wide measuring range and a simple interface between the field and the control room.

NCS-TT106F series intelligent temperature transmitter supports Foundation Fieldbus protocol, which can be widely used in petroleum, chemical, electric power, metallurgy and other industries.

2 Temperature transmitter installation

2.1 Dimensions

NCS-TT106F-R1

Figure 2.1 Dimension of Temperature Transmitter (Unit: mm)

2.2 Installation

Fix the temperature transmitter into the temperature housing or din rail by positioning the two screws through the positioning hole.

Figure 2.2 Installation

2.3 Wiring

Figure 2.3 Wiring

The power supply of NCS-TT106F temperature transmitter and bus signal share a pair of cables, called bus cable. It is recommended to use the fieldbus dedicated cable recommended by IEC61158-2. The signal cable and bus cable should not share the conduit or open channel with the power cables of other equipment, and should be far away from high-power equipment. The shielded wires at both ends of the bus are grounded by single-ended grounding.

3 Foundation Fieldbus Protocol Temperature Transmitter Configuration

3.1 Topology Connection

Foundation Fieldbus transmitter supports multiple network topology wiring methods, as shown in Figure 3.1 Figure 3.2 shows the bus connection of the FOUNDATION FIELDBUS transmitter. Both ends of the bus need to be connected with terminal matching resistors to ensure signal quality. The maximum length of the bus is 1900 meters, and it can be extended to 10 kilometers by using repeaters.

MICROCYBER _____

3.2 Function block

The FOUNDATION FIELDBUS type NCS-TT106F temperature transmitter implements the FOUNDATION FIELDBUS standard function block, see the table below. For the configuration method of the function block, please refer to the FOUNDATION FIELDBUS protocol related documents.

Name	Description
	Resource block, used to describe the characteristics of field devices, such as
Resource Block	device name, manufacturer, and serial number. The resource block has no input
	or output parameters. A device usually has only one resource block
	Transducer block, read the sensor hardware data, or write the field data to the
TEMP_SENSOR 1(TTB)	corresponding hardware. Transducer block contains information such as range,
	sensor type, linearization, I / O data, etc.
	Transducer block, expand the function of transducer block 1, mainly to
CUSTOM_BLOCK1(CTB)	complete the user's secondary calibration and user-defined sensor type
	function
	Analog Input function block 1 (AI 1). Obtain the analog process value from the
AI 1(AI)	transducer block through the internal channel, process it, and provide the
	appropriate measured value to the master device through bus communication
	Analog Input function block 2 (AI 2). Obtain the ambient temperature value
AL 2(AI)	from the transducer block through the internal channel and process it, and
	provide the appropriate measured value to the master device through bus
	communication
(חוס)	Proportional-Integral-Derivative function block (PID). Use this function block to
רוטב(רוט)	realize the split-range control process

3.3 Transducer block configuration example

NCS-TT106F temperature transmitter can connect various types of sensors, such as resistance sensor, RTD thermal resistance sensor, TC thermocouple sensor, -/ + 100mV signal, custom RTD thermal resistance sensor and custom TC thermocouple sensor. The following describes the connection and configuration of each type of sensor.

3.3.1 Connecting a resistance sensor

NCS-TT106F temperature transmitter can measure 0-500 Ω and 0-4000 Ω resistance signals. When the resistance signal sensor is connected, the parameters in the transducer block are configured as follows:

SENSOR_TYPE	= $0-500\Omega$ or $0-4000\Omega$
SENSOR_CONNECTION	= Two Wires or Three Wires or Four Wires
PRIMARY_VALUE_UNITS_INDEX	= Ohm or kOhm
RJ_TYPE	= N/A(ignore)

3.3.2	2 Connect RTD thermal resistance se	enso	sor
	SENSOR_TYPE		= CU50 or CU100 or PT100 or PT1000
	SENSOR_CONNECTION		= Two Wires or Three Wires or Four Wires
	PRIMARY_VALUE_UNITS_INDEX	=	K or °C or °F or °R
	RJ_TYPE		= N/A(ignore)
3.3.3	3 Connect-/ + 100mV signal sensor		
	SENSOR_TYPE		= -/+100mV
	SENSOR_CONNECTION		= Two Wires
	PRIMARY_VALUE_UNITS_INDEX	=	· mV
	RJ_TYPE		= N/A(ignore)
3.3.4	4 Connect TC Thermocouple Sensor		
	SENSOR_TYPE		= T/CType B or T/CType E or T/CType J or T/CType K
			T/CType N or T/CType R or T/CType S or T/CType T
	SENSOR_CONNECTION		= Two Wires
	PRIMARY_VALUE_UNITS_INDEX	=	K or °C or °F or °R
	RJ_TYPE		= No reference or Internal or External or External PT100
3.3.5	5 Custom TC thermocouple sensor		
	SENSOR_TYPE		= Custom defined TC
	SENSOR_CONNECTION		= Two Wires
	PRIMARY_VALUE_UNITS_INDEX	=	K or °C or °F or °R
	RJ_TYPE		= No reference

For custom TC thermocouple sensor measurement, you need to enter the polynomial value in the custom TC parameter in the transducer block CUSTOM_BLOCK1 and the temperature value measured by the calculation formula. The following is an example of measuring a custom TC thermocouple sensor.

CUSTOM_TC_NAME = Custom TC Example CUSTOM_TC_POLY_COUNT = 5 CUSTOM_TC_MIN_IN = -6500.0 CUSTOM_TC_MIN_OUT = -100.0 CUSTOM_TC_MAX_OUT = 1200.0

Example of custom TC thermocouple sensor polynomial coefficients

MICROCYBER ____

CUSTOOM_TC_POLY_X	max.input	4th degree	3th degree	2th degree	1st degree	Odegree
	limit in μV	coefficient	coefficient	coefficient	coefficient	coefficient
	for	for	for	for	for	for
	POLY_X	POLY_X	POLY_X	POLY_X	POLY_X	POLY_X
CUSTOM_TC_POLY_1	-3200.0	-3.84E-13	-5.65E-9	-3.36E-5	-6.10E-2	-8.44E1
CUSTOM_TC_POLY_2	3500.0	-8.13E-15	7.29E-11	-4.18E-7	2.53E-2	-1.08E-2
CUSTOM_TC_POLY_3	10000.0	-1.35E-15	1.50E-11	1.41E-7	2.26E-2	4.18
CUSTOM_TC_POLY_4	30000.0	3.49E-18	2.19E-12	-1.53E-7	2.68E-2	-9.26
CUSTOM_TC_POLY_5	70000.0	6.27E-17	-8.76E-12	5.34E-7	8.69E-3	1.65E2

	3th degree	2th degree	1st degree	0 degree
	coefficient	coefficient	coefficient	coefficient
CUSTOM_TC_RJ_POLY	-1.11E-4	2.65E-2	3.94E1	3.94E-1

For example, the input voltage of the TC terminal of the temperature transmitter is 5000 μ V and the temperature of the cold terminal is 25 ° C. According to the formula, the voltage value corresponding to the temperature of the cold terminal can be calculated:

URJ = $3.94 * 10^{-1} + 3.94 * 10^{1} * 25 + 2.65 * 10^{-2} * 25^{2} - 1.11 * 10^{-4} * 25^{3} = 1000 \,\mu\text{V}$

Add this voltage to the input terminal of TC (5000 + 1000) and then calculate the corresponding temperature value according to the calculation formula:

4.18 + 2.26 * 10-2 * 6000 + 1.41 * 10-7 * 60002 + 1.50 * 10-11 * 60003 - 1.35 * 10-15 * 60004 = 146.3 °C

3.3.6 Custom RTD thermal resistance sensor

SENSOR_TYPE		= Custom defined RTD
SENSOR_CONNECTION		= Two Wires or Three Wires or Four Wires
PRIMARY_VALUE_UNITS_INDEX	=	K or °C or °F or °R
RJ_TYPE		= No reference

Custom RTD thermal resistance sensor measurement, you need to enter the value of the polynomial in the custom RTD parameter in the transducer block CUSTOM_BLOCK1, and the temperature value measured by the calculation formula. You can refer to the way of custom TC to set.

3.4 Function configuration

NCS-TT106F intelligent temperature transmitter supports all mainstream FOUNDATION FIELDBUS master system (NI-FBUS Configurator of NI company, DeltaV of EMERSON, EN2FFR-1788 of Rockwell and other general FOUNDATION FIELDBUS configuration software) on the market for configuration. The following mainly uses NI company's NI-FBUS Configurator configuration software as an example to introduce the configuration and use method of NCS-TT106F temperature transmitter.

3.4.1 Setting up the configuration environment

- 1) PC, the operating system is Windows XP, Windows7 or Windows10;
- 2) NI USB-8486, H1 bus power supply, H1 terminator;
- 3) NI-FBUS Configurator;

As shown in Figure 3.3 below is a demonstration environment built using NI's BUS-8486 as an example.

Figure 3.3 NCS-TT106F hardware test environment

3.4.2 Import DD file

Open the Interface Configuration Utility software in the NI software and import it according to the steps shown in Figure 3.4 below. After successful DD import, there will be a successful prompt.

Figure 3.4 DD import interface

3.4.3 Device online detection

According to the wiring diagram of NCS-TT106F, connect the two lines FF + and FF- to the FOUNDATION FIELDBUS bus. Open the NI-FBUS Configurator software, and the NCS-TT106F device will be detected on the interface. As shown in Figure 3.5 below. In the figure, NCS-TT106F has one resource block, 2 transducer blocks, 2 AI function blocks and 1 PID function block.

Figure 3.5 The device goes online normally

3.4.4 Sensor configuration

When using the NCS-TT106F temperature transmitter, the related parameters should be configured in the transducer block according to the connected sensor model. Open the transducer block TEMP_SENSOR1, change the TARGET in the MODE_BLK parameter of the transducer block to OOS, and configure the sensor type and connection cable system under the SENSOR_TYPE and SENSOR_CONNECTION lists. Take the PT100 three-wire system as an example in Figure 3.6 below.

MICROCYBER _____

0001050006_NCS_TT106_00000007 : TEMP_SENSOR 1 (TTB)							
Apply Values							
TEMP_SENSOR 1 (TTB)	2 🖄	🖳 🔤 😫 🛅 🛅	0				
✓ Periodic Updates 2 (sec)							
00s Auto							
Process 1/0 Config Scaling Tu	ıning Alarms E	iagnostics Calibration	Trends				
Parameter	Value	Ту	be & Extensions	Help 🔺			
ALERT_KEY	0	<u>ច</u> នា ព	nin=1	The identification			
MODE_BLK				The actual, targe			
- * TARGET	005	enu		This is the mode			
	dyn Auto	enu		This is the currer			
	Auto j UUS	enu		Derines the mode			
NOTIMAL	Auto	enu		This is the mode			
BLOCK_ERR	dyn 0x0000	enu		This parameter re			
PRIMARY_VALUE_TYPE	process tempera	ature Eng		The type of mea:			
E PRIMARY VALUE				The measured va			
- VALUE	dyn 10000	f		A numerical quar			
⊕ STATUS							
				The High and Lo			
SENSOR_TYPE	PT100	อกบ		The type of sens			
E SENSOR_RANGE				The High and Lo			
SENSOR_CONNECTION	Three Wires	ลาย		The number of w			
<							
Write Changes			Read All				

Figure 3.6 Sensor configuration

After the configuration is completed, modify the TARGET in the MODE_BLK parameter of the transducer block to Auto, and the ACTUAL parameter in the MODE_BLK parameter should be Auto, otherwise modify the configuration according to the prompt of the BLOCK parameter. You can see the current temperature value and status collected by the PT100 sensor in the PRIMARY_VALUE parameter. As shown in Figure 3.7 below.

0001050006_NCS_TT106_00000007 : TEMP_SENSOR 1 (TTB)							
Apply Values							
TEMP_SENSOR 1 (TTB) 🛛 🗖 🏙 🕍 🔤 🖳 🚍 🛟 🛅 🛅 😧							
▼ Periodic Updates 2 (sec) ÷							
		, ,					
Process 1/0 Config Scaling Tuning	Alarms Diagnostics Calibration	n Trends	1				
Parameter	Value	Type & Extensions	Help ^				
	Auto	2001	The actu				
ACTUAL	dim Auto	enu	This is th				
- PERMITTED	Auto 00S	enu	Defines				
- NORMAL	Auto	enu	This is th				
BLOCK_ERR	ayn 0x0000	enu	This par				
PRIMARY_VALUE_TYPE	process temperature	อกบ	The type				
D PRIMARY_VALUE			The mea 🗉 📗				
- VALUE	ayn 25.5992	f	A numer				
	Good NonCascade	2001					
- SUBSTATUS	NonSpecific	enu	SUBST/				
	NotLimited	enu	LIMITS				
PRIMARY_VALUE_RANGE			The Higl				
SENSOR_TYPE	PT100	ānu	The type				
E SENSOR_RANGE			The Higl				
SENSOR CONNECTION	Three Wires	enu	The nurr 👻 📗				
- III		_	•				
Write Changes		Read All					

Figure 3.7 Temperature measurement value display interface

3.4.5 Two-wire zero calibration configuration

In the two-wire measurement, the two-wire zero calibration can be performed by the TWO_WIRES_COMPENSATION parameter of the transducer block. The specific method is as follows: First, give the channel zero value, that is, short the two ends of the channel.

Secondly, set the parameter TWO_WIRES_COMPENSATION to Start, click the "Write Changes" button.

Finally, after successful writing, read the TWO_WIRES_COMPENSATION parameter and click the "Read All" button until the two-wire zero calibration is successful when the value of this parameter is Finish.

3.4.6 Two-point linearization calibration

NCS-TT106F temperature transmitter has undergone rigorous calibration work before leaving the factory, in general, no user calibration is required. Users can use parameters CAL_POINT_HI, CAL_POINT_LO, and CAL_UNIT to achieve two-point linearization calibration. The following uses mV signal two-point linearization calibration as an example. The operation steps are as follows:

(1) Set the TEMP_SENSOR1 MODE parameter of the transducer block to OOS, and set the SENSOR_TYPE parameter to-/ + 100mV. Set the calibration unit parameter CAL_UNIT to mV according to the sensor type, and set the parameter SENSOR_CAL_METHOD to "User Trim Standard Calibration". The setting diagram is shown in Figure 3.8 below.

0001050008_NCS_11108_000000	• 0001050000_NC3_N100_0000007.1EWF_3EN30K1(NB)							
Apply Values								
TEMP_SENSOR 1 (TTB) 👘 🕍 🕍 🔛 🖳 🖶 🛟 🛅 🛅 😯								
Periodic Updates 2 (sec)								
OOS Auto								
Process I/O Config Scaling Tuning	Alarms Diagr	ostics Calibration	Trends					
Devender		iostics calibration	Tune & Ex	tensions I lale i				
			Турекси	This is th				
ACTUAL	din 005		enu	This is th				
	Auto 00S		enu	Defines				
- NORMAL	Auto		enu	T FIIS IS U				
BLOCK_ERR	🚮 OutOfSe	rvice	enu	This par-				
E . BLOCK_ALM				The bloc				
PRIMARY_VALUE_TYPE	process tem	perature	enu	The type				
CAL_POINT_HI	100		Ŧ	The high				
CAL_POINT_LO	-100		Ŧ	The low-				
CAL_MIN_SPAN	2		Ŧ	The mini ≡				
CAL_UNIT	mV		enu	The De∖				
SENSOR_TYPE	-/+100mV		enu	The type				
SENSOR_CAL_METHOD	user trim sta	ndard calibration	enu	The met				
SENSOR_CONNECTION	Two Wires		enu	The nur				
SENSR_DETAILED_STATUS	0x00		enu	Channel				
				*				
• III				F.				
Write Changes			Read All					

Figure 3.8 Two-point linearization calibration configuration diagram

(2) Calibrate the lower limit mV signal to the acquisition channel through the standard mV signal source. After stabilization, write the output value of the standard mV signal source to the CAL_POINT_LO parameter and click the "Write Changes" button. Similarly, the standard mV signal source is used to output the upper calibration mV

signal to the acquisition channel. After stabilization, write the output value of the standard mV signal source to the CAL_POINT_HI parameter and click the "Write Changes" button. No prompt for writing errors indicates that the calibration was successful. As shown in Figure 3.9 below, the lower limit of the calibration mV signal is -80mV, and the upper limit of the calibration mV signal is 80mV. Note that the written calibration data and the actual input channel data must not have a large deviation, otherwise the calibration will fail.

Apply Values				
TEMP_SENSOR 1 (TTB) 👘 📓	1	🖳 🖶 😫 🛅 🛅	0	
▼ Periodic Updates 2 (sec) 🕂]			
00S Auto				
Process 1/0 Config Scaling Tuning	Alarms	iagnostics Calibration	Trends	
Parameter	Value		Tune & Extensions	Help
- TARGET	005		and	This is th
- ACTUAL	dm 009		enu	This is th
- PERMITTED	Auto 0	OS	enu	Defines
└ NORMAL	Auto		enu	This is th
BLOCK_ERR	din Out()fService	ຮັກນ	This par-
🗉 🧉 BLOCK_ALM				The bloc
PRIMARY_VALUE_TYPE	process	temperature	enu	The type
*CAL_POINT_HI	80		Ŧ	The high
* CAL_POINT_LO	-80		Ŧ	The low
CAL_MIN_SPAN	2		F	The mini ≡
CAL_UNIT	mV		হাত	The Dev
SENSOR_TYPE	-/+100n	W	enu	The type
SENSOR_CAL_METHOD	user trin	standard calibration	อกข	The met
SENSOR_CONNECTION	Two Wi	res	enu	The num
SENSR_DETAILED_STATUS	0x00		enu	Channel
•				-
Write Changes			Read All	

Figure 3.9 Two-point linearization calibration configuration diagram

After completing the above steps, set the TEMP_SENSOR1 MODE parameter of the transducer block to Auto, and mV signal acquisition can be performed normally. BIAS is the offset parameter, and the offset function is valid in this mode. In Celsius, the two-point linearization calibration principle of the ohmic signal is the same as the calibration principle of the mV signal.

3.4.7 Multipoint linearization calibration

NCS-TT106F temperature transmitter has the function of multi-point linearization calibration. It can support up to 16 calibration points. The user can choose whether to enable it according to his needs. Through the calibration parameters TAB_X_Y_VALUE1-TAB_X_Y_VALUE16 of the CUSTOM_BLOCK1 transducer block, the user can complete the multi-point linear calibration of the instrument by himself. The calibration procedure is as follows:

(1) The NCS-TT106F temperature transmitter provides 16 calibration point inputs, namely the TAB_X_Y_VALUE1-TAB_X_Y_VALUE16 array of parameters of the transducer block. The user can write the output values to be calibrated into the array in turn and select a good unit. For example, when performing three-point interpolation calibration, the user can select 10, 20, and 30 as calibration points, and write the three values in the second place in the TAB_X_Y_VALUE1, TAB_X_Y_VALUE2, and TAB_X_Y_VALUE3 arrays, as shown in Figure 3.10.

B 0001050006 NCC TT106 00	000007.00		
- L M L			
Apply values			
CUSTOM_BLOCK 1 (CTB)	2 1 2	🚆 🚍 👯 🛅 🛅 😢	
Periodic Updates 2 (sec)	÷		
00S Auto			
Process 1/0 Config Alarms Dia	anostics		
Parameter	Value	Type & Extension	s Help 🔺
E CUSTOM RTD POLY5			Polyno
ENABLE_TAB_X_Y	Disable	enu	Enable
TAB_X_Y_VALUE1			Input/(
TAB_X_Y_VALUE1	0 10	T .	
D . TAB_X_Y_VALUE2	.		Input/(
TAB_X_Y_VALUE2	0 20		
■	.		Input/(
TAB_X_Y_VALUE3	0 30		
G • TAB_X_Y_VALUE4			Input/(=
TAB_X_Y_VALUE4	0		
C . TAB_X_Y_VALUE5			Input/(
L TAB_X_Y_VALUE5	0	1 1	
TAB X Y VALUE6			Input/(=
] •			+
Write Changes		Read All	

Figure 3.10 Calibration point configuration

(2) Input the standard signal through the standard source, and open the transducer block TEMP_SENSOR1 in the configuration software, read the value of the parameter PRIMARY_VALUE, and write the value to the first place in the TAB_X_Y_VALUE1, TAB_X_Y_VALUE2, and TAB_X_Y_VALUE3 arrays. For example, write the read 10.2, 20.5, 30.4 in the array, and set the parameter ENABLE_TAB_X_Y to "Enable" as shown in Figure 3.11. This is the end of calibration work.

0001050006_NCS_TT106	_00000007 : CUS	TOM_BLOCK 1 (CTB)	
Apply Values			
CUSTOM_BLOCK 1 (CTB)	🏹 🔯 🖄 🔤 🛛	🖳 🖶 👯 🛅 🛅 🚱	
Periodic Undates 2 (sec)			
	<u> </u>		
Auto			
Process I/O Config Alarms	Diagnostics		
Parameter	Value	Type & Ext	ensions Help 4
E CUSTOM_RTD_POLY5			Polyno
	Enable	NOT N	Enable
			loput/(
TAB_X_Y_VALUE1	10.2	E	mpuor
L TAB_X_Y_VALUE1	10	Ŧ	
I O TAB_X_Y_VALUE2			Input/(
- TAB_X_Y_VALUE2	20.5		
- TAD_A_T_VALUE2	20		
TAB X Y VALUE3	20.4		Input/(
L TAB_X_Y_VALUE3	30		
			Input/f a
- TAB_X_Y_VALUE4	0	F	in poor l
- TAB_X_Y_VALUE4	0		
TAB_X_Y_VALUE5		_	Input/(
	0		
		_	Input/C
			4
Write Change	s	Read All	

Figure 3.11 Acquisition parameter configuration

(3) Open the transducer block TEMP_SENSOR1, set the MODE parameter to OOS, and set the parameter SENSOR_CAL_METHOD to "User Trim special Calibration". After successful setting, set the MODE parameter to Auto, and the temperature transmitter will work according to the calibrated characteristic curve.

3.4.8 Enabling cold junction temperature compensation

When using the thermocouple as the sensor, the user can set the cold junction compensation through the

parameter RJ_TYPE, and set it to Internal to enable the internal cold junction compensation. At this time, the value of RJ_TEMP is the temperature value measured internally, that is, the value of the parameter SENCANDARY_VALUE; External can configure a fixed cold junction compensation value by setting the value of EXTERNAL_RJ_VALUE. At this time, the value of RJ_TEMP is the value of EXTERNAL_RJ_VALUE; when it is set to External PT100, the temperature can be measured by an external two-wire PT100 sensor as the cold junction compensation value; setting No reference can disable cold junction compensation, as shown in Figure 3.12.

0001050006_NCS_TT106_00	0000007 : TEMP_	SENSOR 1 (TTB)	- 🗆 X
Apply Values			
TEMP_SENSOR 1 (TTB)	🔯 🗯 🖾 🗳	l 🖶 🗱 🛅 😧	
Periodic Updates 2 (sec)	÷		
00S Auto			
Process I/O Config Scaling Tu	ining Alarms Dia	gnostics Calibration Trends	
Parameter	Value	Type & Extensions	Help 🔺
SENSOR_CONNECTION	Two Wires	enu	The number (
SECONDARY_VALUE	am 29.0625		The seconda A numerical c
	Good_NonCascad NonSpecific NotLimited	e enu enu enu	QUALITY SUBSTATUS LIMITS
SECONDARY_VALUE_UNIT	Degree C	enu	The engineer
SENSR_DETAILED_STATUS	0x00	enu	Channel statı
TWO_WIRES_COMPENSATION	NFinished	enu	Two_wires_c
S RJ_TYPE	No reference		Rj type
BJ_TEMP	No reference Internal		Rjtemp ≡
EXTERNAL_RJ_VALUE	External External PT100	f	External rj val 🚽
K			Þ
Write Changes		Read All	

Figure 3.12 RJ_TYPE configuration

3.5 Function block configuration

NCS-TT106F temperature transmitter has 2 AI function blocks and a PID function block, each function block conforms to the FOUNDATION fieldbus standard. When NCS-TT106F temperature transmitter is applied in engineering, it needs to be configured and configured And download function blocks to complete temperature collection and logic control. The following takes the configuration of the AI function block as an example for detailed description. The specific configuration steps are as follows:

(1) After ensuring that the NCS-TT106F transducer block is configured correctly and are in Auto mode, open the "Function Block Application" configuration interface in the NI software, drag the Al1, Al2, and PID function blocks into the configuration interface to connect Al1 and Al2 OUT to PID IN and CAS_IN respectively. As shown in Figure 3.13 below.

Figure 3.13 Function block configuration diagram

(2) To download the configuration information, click the "Download Project" button on the NI software to

download the configuration project. The download interface is shown in Figure 3.14 below.

Download Configuration	
MATERIAL T	Choose object to download
	sea My System/interface0-0
	Write Contained Block Parameters
	🗖 Clear Devices
() Q 20 Q	🔽 Automatic Mode Handling
Y 🔩 🥨 👌 -	Verify and Diff Configuration Link Masters
Begin task write changes to devices LINK '	"interface0-0"
Cancel Close He	lp

Figure 3.14 Configuration engineering download interface

(3) After the configuration information is downloaded successfully, you need to configure the parameters in the AI function block. Common configuration parameters are CHANNEL, XD_SCALE, OUT_SCALE, and L_TYPE. Let's take the AI1 function block as an example for configuration, open the AI1 function block, modify the TARGET in the MODE_BLK parameter to OOS, modify the upper and lower limits and unit parameters of XD_SCALE, modify CHANNEL to Primary Value, modify L_TYPE to Direct, and click "Write Changes" The button finishes writing the modified parameters. As shown in Figure 3.15.

0001050006_NCS_TT106	5_00000007 : AI 1 (AI)		
Apply Values			
Al 1 (Al)	🞽 📓 🕍 🔤	🖶 😫 🛅 🚺	
✓ Periodic Updates 2 (sec)	÷		
005 Auto Manual			
Process Scaling Tuning 0	ptions Alarms Diagnos	tics Trends	
Parameter	Value	Туре 8	Extensions Help 🔺
			The actual, I
TARGE I	UUS	enu	I his is the m
	Auto LM an LOOS	enu	I his is the ci
	Auto	enu	This is the m
HOIMAL	Hato	4114	E
BLOCK_ERR	0x0000	ènu	This parame
🕀 💿 PV			Either the pri
🗉 🕨 OUT			The primary
		-	The birth an
	850	100	The enginee
-EU Ö	0	f	The enginee
UNITS_INDEX	Degree C	enu	Device Desc
L DECIMAL	2	18	The number
OUT SCALE		-	The high an
-Ευ_100	100	f	The enginee
⊢EU_O	0	f	The enginee
UNITS_INDEX	%	enu	Device Desc
L DECIMAL	2	18	The number
CHANNEL	Primary Value	enu	The number
*L_TYPE	Direct	enu	Determines i
< III			4
Write Chang	jes 🛛	B	ead All

Figure 3.15 Al1 function block configuration interface

(4) After completing the configuration of the AI function block, modify the TARGET in the MODE_BLK parameter of the AI1 function block to Auto, and the ACTUAL parameter in the MODE_BLK parameter should be Auto, otherwise modify the configuration according to the prompt of the BLOCK parameter. In the PV and OUT parameters, you can see that the temperature value of the AI1 function block is 25.6778 and the status is Good_NonCascade. At this time, the AI1 function block is normal, as shown in Figure 3.16 below.

0001050006_NCS_TT106_00	0000007 : AI 1 (AI)		
Apply Values			
Al 1 (Al) 🛛 🗌 🗹	🔯 1 🛍 🐱 🛛 🖳	🖻 🛟 🛅 🔂 👘	
Periodic Updates 2 (sec)	÷		
00S Auto Manual			
Process Scaling Tuning Optio	ns Alarms Diagnostic	s Trends	
Parameter	Value	Type & Extensions	Help 🔺
MODE_BLK TARGET ACTUAL PERMITTED NORMAL	Auto Indiaduto Auto Man OOS Auto	ਰਨਾ ਰਨਾ ਰਨਾ ਰਨਾ	The actual, target, per This is the mode reque This is the current moc Defines the modes wh This is the mode whict
BLOCK_ERR	dyn 0x0000	enu	This parameter reflects
	am 25.6778	Ŧ	Either the primary anal- A numerical quantity ei
	Good_NonCascade NonSpecific NotLimited	ຣກນ ຣກນ ຣກນ	QUALITY SUBSTATUS LIMITS
	25.6778		The primary analog va A numerical quantity er
FQUALITY SUBSTATUS LIMITS	Good_NonCascade NonSpecific NotLimited	ອກນ ອກນ ອກນ	QUALITY SUBSTATUS LIMITS
•			Þ
Write Change	2	Bead/	All

Figure 3.16 Al1 function block acquisition value and status

The configuration of the AI2 function block is the same as that of the AI1 function block, which is not described

here. The user can configure the AI1 function block according to the requirements.

MICROCYBER ____

What needs to be emphasized here is: different algorithms of AI function blocks in different actual modes:

(1)When the actual working mode is O / S, the output parameter OUT status value is Status = Bad; Sub_status = Out of Service. The parameter value is the value of the parameter IN.

(2) When the actual working mode is MAN, if the Uncertain if Man mode option in the STATUS_OPTS parameter is set, the output parameter OUT status value is Quality = Uncertain; Sub_status = Non-specific. In contrast, the output parameter OUT status value is Quality = Good (NC); Sub_status = Non-specific, the value is the last output parameter OUT value or a value written by the interface device.

(3) When the actual working mode is AUTO, the value of the output parameter OUT is obtained according to the basic algorithm of the AI block. The state value of the output parameter OUT is determined according to the state value of the parameter IN and related options in the parameter STATUS_OPTS. The basic algorithm of AI when the actual working mode is AUTO:

First, the channel value (Channel_Val) is obtained from the input transducer block through the channel parameter (CHANNEL) and sent to the transducer block variable of the simulation parameter (SIMULATE). When the simulation is enabled (Enable / Disable = Enable), the simulation value in the simulation variable is the input value; otherwise, the input value is the channel value from the transmission block.

Secondly, after determining the input value, perform range conversion, linearization, small signal removal and filtering, etc., and finally get the output value (including the value and status).

Finally, the formula for calculating the field value is as follows:

FIELD_VAL= 100*(Channel_val-EU@0%)/(EU@100%-EU@0%)*[XD_SCALE]

The calculation method of OUT output value depends on the linearization type. There are three types of linearization type L_TYPE: Direct, Indirect, and Indirect Square Root. The calculation formula is as follows. Among them, the two parameters XD_SCALE and OUT_SCALE record the input adjustment block and output value range And unit, EU @ 100% and EU @ 0% are the measured value at full scale and zero point respectively.

Direct: PV = channel value

Indirect: PV = (FIELD_VAL/100) * (EU@100% - EU@0%) + EU@0% [OUT_SCALE]

Ind Sqr Root: PV = sqrt(FIELD_VAL/100) * (EU@100% - EU@0%) + EU@0% [OUT_SCALE]

(4) Monitor the output value and status of the function block through the configuration interface, click the "Monitoring Mode" button on the NI configuration interface, select the input and output parameters to be monitored according to the prompt interface, and click the "Start Monitoring" button to start monitoring. See Figure 3.17 below It is the configuration monitoring interface.

Figure 3.17 Function block configuration monitoring interface

4 Maintenance

Phenomenon	Solution
	Temperature Transmitter Connection Check the bus cable connection Check bus power polarity Check bus cable shield, whether it is single point earthing or not
No communication	Bus power At the temperature transmitter end, the output voltage of the bus power supply should be between 9 and 32V. In addition, bus noise and ripple should meet the following requirements: 1) Peak-to-peak noise 16mV, 7 ~ 39kHZ; 2) Peak-to-peak noise 2V, 47 ~ 63HZ, non-intrinsically safe environment; 3) Peak-to-peak noise 0.2V, 47 ~ 63HZ, intrinsically safe environment; 4) Peak-to-peak noise of 1.6V, 3.9M ~ 125MHZ. Network Connection Check network topology structure
	Check terminal matcher and wiring Check the length of main trunk and branch
	Address Conflict The factory default address of the temperature transmitter is 247, try to avoid address conflicts. However, there may still be address conflicts on a network segment. When a conflict occurs, sometimes the conflicting device will go online with a temporary address. Sometimes it can't go online at all. You can power off the conflicting devices first, and then power on one by one until all go online.
	Temperature Transmitter Failure Replace the temperature transmitter with others for testing.
	Temperature Module Connection Failure Check sensor short circuit, open circuit, and earthing. Check sensor
Reading Error	Noise Disturb Adjust damping Check the house earthing Check if the terminal is moist Check the cable is away from the strong electromagnetic interference
	Software Configuration Check sensor type configuration Check function block parameter configuration
	Temperature Transmitter Failure Replace the temperature module with others for testing.

5 Technical specifications

5.1 Basic parameters

Bus interface	FOUNDATION FIELDBUS
Bus power	$9 \sim 32$ VDC $9 \sim 17.5$ VDC (Intrinsically safe)
Input signal	Pt100、Pt1000、CU50、CU100、0 \sim 500 Ω 、0 \sim 4000 Ω resistance; B E J K N R S T thermocouple、-100mV \sim 100mV、Custom defined TC、Custom defined RTD
Number of channels	Single channel
RTD wiring	2-wire、3-wire、4-wire
Update time	0.5s
Operating temperature	-40~85°C
Storage temperature	-40~85°C
Humidity range	5~95%RH
Electrical isolation	1000VAC
Voltage effect	±0.005%/V
Protection level	Terminal IP00 ;Housing IP40
Explosion-proof	Ex ia IIC T4 Ga
EMC	GB/T 18268.1-2010 Immunity requirements for industrial sites in "Electromagnetic Compatibility Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use Part 1: General Requirements" GB/T 18268.25-2010 "Electromagnetic compatibility requirements for electrical equipment for measurement, control and laboratory use-Part 25: Special requirements. Test configuration, working conditions and performance criteria for field devices whose interfaces conform to IEC 61784-1, CP 3/2"

5.2 Thermal resistance technical index

• RTD Normal temperature accuracy index (25°C)

Signal type	Recommended range (°C)	Accuracy	Temperature drift (per °C)
Desistence signal	0~500Ω	±0.04Ω	±0.001Ω
Resistance signal	0~ 4000Ω	±0.35Ω	±0.015Ω
PT100	-200~850°C	±0.15°C	±0.003°C
PT1000	-200~850°C	±0.15°C	±0.005°C
CU50	-50~150°C	±0.15°C	±0.005°C
CU100	-50~150°C	±0.10°C	±0.003°C

• RTD Other technical indicators

Wiring	2, 3, 4
Common mode rejection ratio	≥70dB(50Hz & 60HZ)
Differential mode rejection ratio	≥70dB(50Hz & 60HZ)

5.3 Thermocouple technical indicators

• Thermocouple room temperature accuracy index (25°C)

Signal type	Range	Recommended range	Accuracy	Temperature drift (per °C)
mV	-100mV~+100mV	-100mV~+100mV	±0.025mV	±0.001 mV
В	0°C~1820°C	500°C~1810°C	±0.77°C	±0.050°C
E	-270°C~1000°C	-200°C~1000°C	±0.20°C	±0.025°C
J	-210°C~1200°C	-190°C~1200°C	±0.35°C	±0.01°C
К	-270°C~1372°C	-200°C~1372°C	±0.40°C	±0.025°C
Ν	-270°C~1300°C	-190°C~1300°C	±0.50°C	±0.015°C
R	-50°C~1768°C	0°C~1768°C	±0.75°C	±0.023°C
S	-50°C~1768°C	0°C~1768°C	±0.70°C	±0.023°C
Т	-270°C~400°C	-200°C~400°C	±0.35°C	±0.015°C

• Other technical indicators of thermocouple

Compensation accuracy	±0.5°C
Sensor type	B, E, J, N, K, R, S, T; -100mV \sim +100mV Voltage
Common mode rejection ratio	≥70dB(50Hz & 60HZ)
Differential mode rejection ratio	≥70dB(50Hz & 60HZ)

5.4 Physical characteristics

Size	NCS-TT106F: ¢45*23mm; NCS-TT106F-R1: 110*99*22.5mm
Housing material	Nylon

Microcyber Corporation Web:http://www.microcyber.cn/en Add: 17-8 Wensu Street, Hunnan New District, Shenyang, China 110179 Tel: 0086-24-31217278 / 31217280 Fax: 0086-24-31217293 Email: sales@microcyber.cn