YAEN206 serial # THERMAL PRINTER MECHANISM #### TECHNICAL REFERENCE #### Xiamen Yaen Electronic Technology Co., Ltd. Add: 3rd Floor, No. 1, Shantou lane, Pantu village, XikeTown, Tong'an District, Xiamen, China Phone: +86-15259204946 Email: sales@asia-printer.com URL: www.asia-printer.com # Thermal printer mechanism YAEN206 All reserves the right to make changes without notice to the specification and materials contained herein, and shall not be responsible for any damage (including consequential) caused by reliance on the materials presented, including but not limited to typographical, arithmetic, or listing errors. You can refer to our website: www.asia-printer.com for more information. # **REVISION RECORDS** | REV. | DATE | DESCRIPTION | Drawn | Checked | Approved | |------|------|-------------|-------|---------|----------| # **Contents** | CHAPTER 1 CHARACTERS AND OPERATING PRECAUTIONS | 5 | |--|----| | 1. 1 Characters | 5 | | 1.2 Operation precautions | 6 | | CHAPTER 2 SPECIFICATIONS | 8 | | 2.1 General specifications | 8 | | 2.2 Heat element dimensions | 9 | | 2.3 Step motor characteristics | 10 | | 2.3.1 Step motor specifications | | | 2.3.2 Motor drive circuit diagram | | | 2.3.3 Excitation sequence | 10 | | 2.4 Thermal head specifications | 13 | | 2.4.1 General characteristics | | | 2.4.2 Maximum parameter | 13 | | 2.4.3 Characteristics recommended | 14 | | 2.4.4 Electrical characteristics | 14 | | 2.4.5 Timing characteristics | 16 | | 2.4.6 Timing chart | | | 2.4.7 Equation: | | | 2.4.8 Thermistor resistance | | | 2.4.9 Structure figure | | | 2.4.10 Operating precautions | 19 | | 2.5 Pin assignment | 20 | | 2.6 Photo interpreter specification | 21 | | CHAPTER 3 CASING DESIGN GUIDE | 22 | | 3.1 Thermal printer mechanism structure dimensions | 22 | | 3.1.1 Roll-paper mounting position | 22 | | 3.1.2 Platen structure dimensions. | | | 3.1.3 Overall dimensions | | | 2.2 DEMO circuit figur | 25 | #### **Chapter 1 Characters and operating precautions** #### 1.1 Characters #### 1. Operating voltage range The range of TPH operating voltage is $3.3 \sim 5.5 \text{V}$ and the range of logic voltage is $2.7 \sim 5.5 \text{V}$. #### 2. Low volume Compact and light The mechanism is compact and light, dimensions: 68.5mm (width) * 31mm (depth) * 22.0mm (height). #### 3. Printing with High resolution A high-density printer head of 8 dots/mm make the printing clear and precise. #### 4. High speed printing According to driving power and sensitivity of thermal paper, set different printing speed required. Max printing speed is 75 mm/ sec. #### 5. Easy paper loading Detachable rubber roller structure makes the paper loading easier #### 6. Low noise Thermal line dot printing is used to guarantee low-noise printing. #### 1.2 Operation precautions - 1) When handling this printer, because TPH and photo interpreter is sensitive to static electricity, please take any preventive measures against static electricity, such as disposable static wrist strap, in order to prevent damages of inner parts of the printer caused by the static electricity. - 2) When attaching the platen part to the platen retainer, pay attention not to flaw or damage or smear the rubber part of the platen, the platen gear, and the bearing part (particularly, don't attach any oil or grease and foreign materials on the rubber part.) - 3) Never attempt to touch the thermal printer head surface with bear hands. Attaching any oil or grease such as oils from palms on the heating element part of may be shortening the lifetime of the thermal head. In case that any oil and grease or foreign materials are attached on it. Perform the cleaning immediately. In addition, pay attention not to hit it with something hard such as driver. - 4) When assembling the platen to the platen retainer of the casing, make sure that the orientation is correct. - 5) The thermal head and FPC are shipped as they are connected. When installing the printer, do not pull or apply any extra force in order to avoid the connected part of the thermal head and FPC from being disconnected or deviated. When connecting FPC, please make it sure under condition that the power of control circuit is off. Plug in / out FPC to control board, should less than 10 times, meanwhile make FPC parallel to connector socket. - 6) Do not make FPC bend because it may cause FPC disconnection or broken. If FPC requires to be bent, it will be rework if the bending more than R1. - 7) The printer has a structure such that the platen part is removed from the printer cabinet. Therefore, if any paper ejected from this printer is pulled away with an unnecessarily strong force, it may cause the platen gear to get off the track and damage the gear. Do not attempt to pull any paper ejected from the printer. - 8) Wet paper can make it jammed, pay attention to the following items when using the printer: - *Turn off the power please when it is not used - *Do not load any wet paper please. - * Turn off the power to the head immediately when condensation occurs. Use the head only after the heads is completely dried. Depending on the environment where the printer is used (the low temperature or high humidity), condensation may be caused by water vapor generated from the used paper when performing the printing of the high printing rate. Therefore, the environment should be considerably evaluated. - 9) To separate the head and the platen after the paper run off, If the paper is run out during the printing, stop all actions of the printer in order to prevent the printing without the paper fed. If the printing is continued without any paper fed, it may cause the troubles of the printer. - 10) When using this printer for the continuous actions, the temperature of the head printer board (the detected temperature with the thermistor) should be equal or less than 75 degrees centigrade for the temperature protection of IC inside of the printer as well as the surface temperature of the motor should be equal or less than 90 degrees centigrade for the temperature protection of the motor coil. - 11) Make sure paper load smooth please. - 12) Use high quality thermal paper, for the property of the paper have big effect on printing quality. The perforated paper may cause the damage to the thermal heads and even shorten lifetime. # **Chapter 2 Specifications** # 2.1 General specifications | | Print method | Thermal dot line printing | | |--------------------------|--|--|--| | | Dots per line | 384 dots | | | Printing | Resolution | 8 dots/mm | | | | Print width | 48 mm | | | | Printing Speed(Max) | 75mm/s | | | Paper | Paper width | 57±1mm | | | Fapei | Paper feed pitch | 0.0625mm | | | Detection | Head temperature detection | Via thermistor | | | Detection | Out-of-paper detection | Via photo interrupter | | | life | Life span (at 25°C and rated energy)
Activation pulse resistance
Abrasion resistance | 110 million pulses or more
(print ratio=12.5%)
50 km or more | | | | Operating temperature range (°C) | - 10∼50 | | | Operating Environment | Operating humidity (RH) | 20%~85% | | | Operating Environment | Storage temperature range (°C) | -20~60 | | | | Storage humidity (RH) | 5%~90% | | | Physical Characteristics | WxDxH (mm) | 68.5×31.0×22.0mm | | | Physical Characteristics | Weight | | | #### 2.2 Heat element dimensions YAEN206 contains a thermal head with 384 heat elements (dot-size) figure 2-1 Heat Element Dimensions Figure 2-2 Print Area #### 2.3 Step motor characteristics #### 2.3.1 Step motor specifications | Item | Specification | | |------------------------------|-------------------------------------|--| | Туре | PM | | | Number of phases | 2-phase | | | Excitation | 2-2 phase | | | Winding resistance per phase | 19Ω±7% | | | Rated voltage | 5V | | | Drive frequency | 50-1200pps(Depends driving voltage) | | #### 2.3.2 Excitation sequence | Ciamal name | Sequence | | | | | |-------------------------|----------|-------|-------|------|--| | Signal name | STEP1 | STEP2 | STEP4 | | | | А | high | high | low | low | | | \overline{A} | low | low | high | high | | | В | low | high | high | low | | | $\overline{\mathrm{B}}$ | high | low | low | high | | #### 2.3.3 Step motor driving There are two step motor drivings: Constant current driving and constant voltage driving The advantages and disadvantages of constant current driving and constant voltage driving: | | Constant current driving | constant voltage driving | | | |---------------|---|--|--|--| | advantages | Overall drive current is relatively small, motor heat is small. Drive noise is small. Power-saving. | Motor driving force is relatively large Circuit is simple and cheap | | | | disadvantages | 1. Motor driving force is relatively small2. Complex circuit, slightly higher cost | Drive current is large, motor heat is large High noise Current consuming | | | As printer head in use for some time, transmission resistance will increase. In the design, the driving power of motor should have some tolerance which avoid shrink line Recommending when the product design is completed, please test the towing power of motor (as the chart). Under the highest driver frequency, recommend the towing power might not be less than 100grams. There are two common methods to drive the step motor: 2-2 phase drive (Full Step), 1-2 phase drive (Half Step). For full step driving, the drive IC charges the two windings in step motor to the predetermined current in sequence. Each plus will drive the motor to rotate with a typical step angle. These methods result in a simple drive circuit and software, but also bigger noise in low speed. Half step drive is more complicate than full step drive, such as charging on A phase, rotor teeth stop on stator poles, drive receive next pulse, for example, charging B phase and keep A phase in a charging situation, rotor teeth will move half step angle, stop in the middle of two nearby whole step. This can make the case without changing the motor, stepper motor angular resolution doubling. In this drive way, two phases may need to be energized, with the motor driving IC, control each step of each phase in the ratio of the current state; it can make the motor run quieter. But it also improves the complexity of control software to some extent. Timing table of motor driving | STEP | Time(ms) | STEP | Time(ms) | |------|----------|------|----------| | 1 | 2.890 | 10 | 0.687 | | 2 | 1.786 | 11 | 0.651 | | 3 | 1.381 | 12 | 0.621 | | 4 | 1.157 | 13 | 0.600 | | 5 | 1.014 | 14 | 0.572 | | 6 | 0.914 | 15 | 0.552 | | 7 | 0.838 | 16 | 0.533 | | 8 | 0.777 | 17 | 0.516 | | 9 | 0.728 | 18 | 0.500 | #### 2.4 Thermal head specifications #### 2.4.1 General characteristics | Item | Specification | | | |---------------------------|----------------------------------|--|--| | Print width | 48 mm | | | | Number of heater elements | 384 dots | | | | Heater resolution | 8 dots/mm | | | | Heater pitch | 0.125 mm | | | | Heater resistance | \overline{R} =176 Ω ±3% | | | | Number of data inputs | 1 serial input | | | | Logic signals | 1 STROBE and 1 LATCH | | | #### 2.4.2 Maximum parameter | Parameter | Symbol | Specification | Note | | |--|----------|---------------------------------|---------------------------|--| | Heater energy | _ | 2.5 ms/line | | | | consumption | Eo max | 0.19 mJ/dot | Ta=25℃ | | | Head voltage | VH max | 5.5 V | TPH Connector | | | Logic voltage | VDD max | 5.5V | | | | Number of heating dots simultaneously ON | Ndot max | 96 dots | | | | Operating temperature* | Та | -5 ℃ ~ +50 ℃ | Non-condensing | | | Storage temperature | | -40 °C ∼ +80 °C | | | | Operating humidity* | | 10∼90%RH | Non-condensing | | | Storage humidity | | 5∼90 %RH | | | | Maximum operating | T- | Continuous:65° C
30min. MAX. | Printing must be stopped, | | | temperature | Ts | Peak75° C Thermistor temp. | and wait until 60° C | | NOTE:On the above conditions,TPH can't ensure the printing quality and life. ^{*:}In the temperature which is out of range(+5 $^{\circ}$ C~+40 $^{\circ}$ C),it will influence the printing quality. #### 2.4.3 Characteristics recommended | | Item | Symbol | Recommended conditions | | Note | | |--------------------------|------|---------|------------------------|--------------------|---|--| | Printing speed | | | 2.5 ms/line | 1.25 ms/line | | | | Heater power consumption | | Po | 0.238W/dot | 0.336 W/dot | $\overline{R} = 176\Omega$ | | | Heat voltage | | VH | 7.2V | 8.5V | Connect both sides | | | Supply
energy | 5℃ | | 0.20mJ/dot(0.84ms) | 0.17mJ/dot(0.51ms) | | | | | 25°C | Eo (ts) | 0.18mJ/dot(0.76ms) | 0.14mJ/dot(0.42ms) | $\overline{R} = 176\Omega$
See 2.4.7 | | | | 40°C | | 0.16mJ/dot(0.67ms) | 0.13mJ/dot(0.39ms) | See 2.4.7 | | | Supply current | | lo | 36.8mA/dot | 43.7mA/dot | | | #### 2.4.4 Electrical characteristics #### 1) Limited parameter | Item | Symbol | Text condition | Rated value | Rated value | |----------------------|-------------------------|----------------|-------------|-------------| | Supply voltage | VDD | Surge | 0~5.5 | V | | Supply voltage | VH | Surge | 0~6 | V | | Logic input voltage | Logic input voltage VIN | | 0∼VDD+0.3 | V | | Drive supply current | lh | | 70 | mA | #### 2) Recommended parameter | Item | Symbol | Text | Reference | | | Unit | |--------------------|--------|-----------|-----------|------|---------|-------| | item | Symbol | condition | Min. | Тур. | Max. | Offic | | Supply | VDD | | 2.7 | 3.0 | 5.5 | V | | voltage | VH | | _ | 3.3 | 5.5 | V | | Logic input | VIH | | 0.7*VDD | _ | VDD | V | | voltage | VIL | | 0 | _ | 0.3*VDD | V | | Clock
frequency | fclk | Duty 50% | _ | _ | 5 | MHz | # 3) Electrical characteristics | Item | | Symbol | Test conditions | Min. | Тур. | Max. | Unit | |------------------|------------------|-----------|-------------------------|------|------|------|--------| | | LATCH | _ | VDD=3.0V
VIH= 3.0V | - | - | 4.0 | - μΑ | | | STROBE | | | - | - | 4.0 | | | | CLOCK | ·IН | | - | - | 4.0 | | | Logic | DATAIN | | | - | - | 4.0 | | | input
current | LATCH | | VDD=3.0V
VIL=0V | -240 | - | - | μΑ | | | STROBE | 1 | | -240 | - | - | | | | CLOCK | IL | | -4.0 | - | - | | | | DATAIN | | | -1.0 | - | - | | | | output
e(Low) | V_{DOL} | VDD=3V
IDOL=50mA | - | 0.3 | 0.6 | V | | Drive Lea | ak current |
LEAK | VDD=3V
IDOL=50mA | - | 0 | 1.0 | μΑ/dot | | Logic sup | ply current | IDD | fCLK=2MHz
DI=1/2fCLK | - | 20 | 40 | mA | Note: Each STROBE includes pull-up resistance of 75K $\Omega \pm$ 50% per IC. # 2.4.5 Timing characteristics | Parameter | Symbol | | | | | |------------------------------|---------------------|------|------|------|-------| | Parameter | | Min. | Тур. | Max. | unit. | | Clock frequency | f
clk | - | - | 5 | MHZ | | Clock pulse width | t _w (T) | 70 | - | ı | ns | | Data setup time | t (D) | 40 | - | - | ns | | Data hold time | t _h (D) | 40 | - | - | ns | | Latch setup time | t (LA) | 100 | - | - | ns | | Latch pulse width | t _w (LA) | 100 | - | - | ns | | Latch to Strobe setup time | tsu(STB) | 100 | - | - | ns | | Strobe to Latch setup time | th(STB) | 10 | - | - | ns | | Clock to Data out delay time | t _d (SO) | - | - | 120 | ns | | Strobe to driver | t (DO)r | - | - | 60 | μs | | Output delay time | $t_d(DO)f$ | - | - | 15 | μs | # 2.4.6 Timing chart *: While printing, data transmission is possible #### **2.4.7 Equation:** Calculate the printing energy using this equation: $$E_{o} = I_{o}^{2} \overline{R} t_{s} = \frac{(VH - V_{com})^{2} \cdot \overline{R} \cdot t_{s}}{(\overline{R} + R_{ic})^{2}}$$ $R_{ic} = 11.7 \Omega$: Driver IC "ON" resistance t_s : Strobe pulse width VH : Head voltage \overline{R} : Heater average resistance $V_{com} = 0.3 \text{ V}$ #### 2.4.8 Thermistor resistance $R_{25} = 30 \text{K} \Omega \pm 5\%$, B CONST = 3950kelvin ± 3%, $R = R_{25} e^{B(1/T - 1/T_{25})}$ | Temperatur | Thermistor Resistance (R) | | | | | | |------------|---------------------------|----------|----------|--|--|--| | e
(°C) | Min.(KΩ) | Typ.(KΩ) | Max.(KΩ) | | | | | -40 | 717 | 843 | 989 | | | | | -35 | 535 | 623 | 723 | | | | | -30 | 405 | 466 | 535 | | | | | -25 | 308 | 352 | 400 | | | | | -20 | 238 | 269 | 303 | | | | | -15 | 185 | 208 | 232 | | | | | -10 | 145 | 161 | 178 | | | | | -5 | 113 | 124 | 137 | | | | | 0 | 88.7 | 96.8 | 105 | | | | | 5 | 69.9 | 75.7 | 81.7 | | | | | 10 | 55.4 | 59.5 | 63.8 | | | | | 15 | 44.1 | 47.1 | 50.1 | | | | | 20 | 35.4 | 37.5 | 39.6 | | | | | 25 | 28.5 | 30 | 31.5 | | | | | 30 | 22.8 | 24.2 | 25.5 | | | | | 35 | 18.3 | 19.6 | 20.8 | | | | | 40 | 14.9 | 15.9 | 17.1 | | | | | 45 | 12.1 | 13.1 | 14.1 | | | | | 50 | 9.92 | 10.8 | 11.7 | | | | | 55 | 8.16 | 8.91 | 9.7 | | | | | 60 | 6.76 | 7.41 | 8.12 | | | | | 65 | 5.62 | 6.2 | 6.83 | | | | | 70 | 4.7 | 5.21 | 5.77 | | | | | 75 | 3.95 | 4.4 | 4.9 | | | | | 80 | 3.34 | 3.74 | 4.18 | | | | #### 2.4.9 Structure figure | STROBE No. | Dot No. | Number of Dots | | | |------------|---------|----------------|--|--| | 1 | 1 ~ 384 | 384 | | | #### 2.4.10 Operating precautions In order to prevent the printer head does not appear hot spot overheating and burned up phenomenon, when we designing products, need to pay attention to several points as follows: In hardware terms: - 1. When the power on, the order should be VDD-VH. - 2. When the power is on or stand by, make sure that the STROBE signal is in invalid state. - 3. Make sure if program is abnormal (such as system halted), VH voltage should be shut off automatically. - 4. During the printing, Detecting thermistor temperature, make sure that the thermal printer head (TPH) is not overheated. In software terms: - 1. STROBE time should not be too long. - 2. In the following two cases, do not start: - 1) when the motor is stationary; 2) When the paper is out. - 3. When the power is on or completed each printing task, it is recommended to send data to the printer blank line, so it can protect when some hardware failure on the control board will not damage the printer. - 4.Over-temperature protection:The printer stops working when heating temperature greater than 75 $^{\circ}$ C, and start working again when the temperature reached 60 $^{\circ}$ C. #### 2.5 Pin assignment Signal name NO. 1 VH2 VHVH 3 DATA IN 4 CLOCK 5 6 GND GND 7 GND 8 9 VDD STROBE 10 THERMISTOR 11 12 GND 13 GND 14 GND LATCH 15 16 VΗ 17 VH18 PS 19 GPS 20 VPS 21 Α Ā 22 23 В 24 #### 2.6 Photo interpreter specification TMP206 has a reflexive sensor. These two situations might destroy the reflection, and output the high level: Platen released or paper out. As follows: When everything is normal, the sensor will output low level. The circuit driver of opto detection as follows: The logic voltage could be 3.3V or 5V. When the paper out or platen released, do not start printer. #### Electro-Optical Characteristics (Ta=25°C) | Parameter | | Symbol | Number | | | Unit | Condition | |-----------------------------|------------------------------|---------------------|--------|------|------|-------|--| | | | Syllibol | Min. | Тур. | Max. | Utill | Condition | | loout | Forward Voltage | V_{F} | | 1.2 | 1.4 | V | I _F =20mA | | Input | Reverse Current | I _R | | | 10 | μΑ | V _R =5V | | Output | Collector-Emitter
Voltage | BV _{CEO} | 30 | | | V | I _C =0.5mA | | | Emitter-Collector
Voltage | BV _{ECO} | 5 | | | V | I _E =0.1mA | | | Dark Current | I _{CEO} | | 1 | 100 | nA | V _{CE} =10V | | Transfer
Characteristics | Light Current | I _C (ON) | 100 | 380 | 750 | | V _{CE} =2V
I _F =2mA | | | Leakage Current | I _{CEOD} | | | 20 | μA | | | | Rise time | t _r | | 30 | 100 | µsec | V _{CE} =2V | | | Fall time | t _f | | 25 | 100 | µsec | I_C =100μA
R_L =1ΚΩ | # **Chapter 3 Casing design guide** #### 3.1 Thermal printer mechanism structure dimensions #### 3.1.1 Roll-paper mounting position #### Wrong mounting #### 3.1.2 Platen structure dimensions. [Unit: mm] #### 3.1.3 Overall dimensions #### 3.2 DEMO circuit figure