

RG SERIES

ULTRA HIGH OHM VALUE METAL GLAZE FILM RESISTORS

Feature

- · Advanced metal glaze film technology
- · Very low TCR: up to ±25ppm/K
- · Very low noise and voltage coefficient up to 1ppm
- · High pulse loading capability
- Maximum working voltage up to 10,000V
- · TÜV certificate from 2009

Description

Production is strictly controlled and follow an extensive set of instructions established in production procedure for reproducibility. A special homogeneous film of metal glaze is sintered on high-grade ceramic rods (85%~96% AL₂O₃) and conditioned to achieve the desired stability and reliability.

The resistor elements are covered by a protective silicon coating designed for electrical, mechanical and climatic protection. The leads are covered with a final pure tin plating for keeping perfect solderability and wonderful outlooking. Color code rings designate the resistance value and tolerance in accordance with IEC60062 but the yellow and white color rings are used to replace gold and silver rings for better high voltage performance.

Applications

- · High resistance, high stability and high reliability at high voltage circumstances
- · Municipal electricity input pulse especially electricity surges protecting
- · High temperature and high humidity environments

1. PART NUMBER:

Part number of the metal glaze film resistor is identified by the series name, power rating, tolerance, temperature coefficient, packing type and resistance value.

For example:

_

RG	17S	J	2	т	5604	
Series Name	Power Rating	Resistance Tolerance	Temperature Coefficient	Packing Type	Resistance Value	
(1) Seri	es name:	RG serie	es			
(2) Pow	ver rating:	73=1/4	W,74=1/2W,1	6=1.0W,1	7=2.0W,18=3.0W	
(3) M=	Tiny size;	S= small	size; " "= nc	ormal size		
(3) Tol	erance:	D=±0.50	0%; F=±1.0%	‰; J=±5%	; K=±10%	
(4) T.C	C.R.: C3	=±25ppm/°C	2; C2=±50ppr	n/℃; C1= <u>:</u>	±100ppm/°C;	
	0=	>±100ppm/	C			
(5) Pa	ackaging ⁻	Type: B=Bl	JLK/BOX; T	=Tape/Bo	ox;	
		M type and	F type formi	ng are ava	ilable on request	
(6) Resi	stance Va	lue: 1002=1	10k,3303=330	0k,1004=1	M,1005=10M,	

1006=100M, 1007=1000M=1G.....

2. Derating curves

The power dissipation on the resistor generates a temperature rise against the local ambient, depending on the heat flow support of the printed-circuit board (thermal resistance). The rated

dissipation applies only if the permitted film temperature is not exceeded. These resistors do not feature a limited lifetime when operated within the permissible limits. However, resistance value drift increasing over operating time may result in exceeding a limit acceptable to the specific application, thereby establishing a functional lifetime.

3. Marking:

Color code (the 6th code is the identify code for RG series and Yellow code and white code is used to replace the golden code and silver code for protecting high voltage performance.) The black code behind the tolerance code is the identification code to distinguish metal glaze film from metal oxide film resistors and other resistors.

COLOR	1st	2nd	3rd	Multiple	tolerance	ID
black	0	0	0	1		
brown	1	1	1	10	F(±1.0%)	
red	2	2	2	10 ²	G(±2.0%)	
orange	3	3	3	10 ³		
yellow	4	4	4	10 ⁴		
green	5	5	5	10 ⁵	D(±0.50%)	
blue	6	6	6	10 ⁶		
purple	7	7	7			
gray	8	8	8			
white	9	9	9			
golden				10 ⁻¹	J(±5.0%)	
silver				10 ⁻²	K(±10%)	

4. ELECTRICAL CHARACTERISTICS

			2			0		
Туре		RG73	RG74	RG16	RG17	RG18		型号
Standard applied				Q\SLC007-2000)			温度系数
DIN-44061		0207	0414	0617	0719		德国工业标准型	
Cross to VISHAY's		VR25	VR37		VR68		对应Vishay 公司	
Cross to CADDOCK's		MG655	MG660	MG710	MG721		对应	Caddock 公司型号
Cross to PRP's		HV1/4	HV1/2	HV 1	HV 2	HV 3	对应PRP 公司型	
Cross to HYMEG's		HA-55	HA-60	HA-65	HA-70		对应HYMEG 公司型	
Cross to TEPRO's		TVH.25	TVH.5	TVH.75			对应TEPRO 公司型	
Cross to IRC/TT's		CGH-1/4 RG07	CGH-1/2 RG20	CGH-1	CGH-2		对应IRC/TT 公司型号	
Cros to OHMITE's		MOX200	MOX300				对应	OHMITE 公司型号
Cross to EBG's			RSX1/10	OGP 13	OGP 26			对应EBG 公司型号
Resistance range		$1k\Omega$ to $1G\Omega$	1kΩ to 1GΩ	1kΩ to 1GΩ	1kΩ to 2GΩ	1kΩ to 2GΩ	阻值范围	
Resistance tolerance		D(±0.5%); F(±1%); J(±5.0%); K(±10%)					阻值精度	
Temperature coefficien	t	±25ppm/°C; ±50ppm/°C; ±100ppm/°C; ±200ppm/°C						温度系数
Rated dissipation,	P 70	0.25W	0.50W	1.0W	2.0W	3W	P 70	70℃以下功率
Max. operating voltage		1600V _{DC}	3500V _{DC}	5000V _{DC}	7000V _{DC}	10000V _{DC}		最大工作电压
		3500V _{DC}	3500V _{DC}	7000V _{DC}	10000V _{DC}	10000V _{DC}	具上标时间计带中国	
Max. short time over lo	ad voltage	$U_{max}=2.5 \times \sqrt{P_{70} \times R}$, 5s on and 45s off,10 cycles; $\triangle R/R \leqslant 0.5\%$					最大短时间过载电压	
Operating Temperature	e range			-55℃ to 155℃				工作温度范围
Insulation voltage		>500V _{DC}	>700V _{DC}	>700V _{DC}	700V _{DC}	1000V _{DC}	绝缘耐压	
Noise		per IEC 60195					稳态湿热实验	
Derating curve			Linearly	down from 70 °C	to 155℃			降功率曲线
Dimension	Max. (mm)	L=6, D=2.5	L=10, D=3.5	L=13, D=4.5	L=17, D=5.5	L=26, D=8.5	Max. (mm)	
Dimension	±0.10(mm)	d=0.6	d=0.6	d=0.8	d=0.8	d=0.8	±0.10(mm)	外型尺寸
Outlook		<u> </u>				<u> </u>	RGE76J0 41208400	
Yellow code and gray code	e is used to repla	ice the golden code	e and silver code fo	or protecting high vo	oltage performance			
The black code behind the	tolerance code	is to distinguish the	e metal glaze film	resistors from the o	thers.			
黄色色环和灰色色环取								
精度色环之后的黑色色	环作为金属釉	膜电阻的特殊标	志,用于区别金属	釉膜电阻器和其'	它电阻器			

- Unless otherwise specified, all values are tested at the following condition: Temperature: 21°C to 25°C; Relative humidity: 45% to 60%
- All resistance calibrated at 100Vdc unless otherwise specified.

5. ENVIRONMENTAL CHARACTERISTICS

(1) Insulation Resistance

IEC 60115-1, 4.6: in V-block for 60 seconds, the test resistance should be high than 1,000 M Ohm.

(2) Dielectric Withstanding Voltage

IEC 60115-1 4.7: Place resistors in V-block for 60 Seconds, no breakdown or flashover.

(3) Temperature Coefficient Test

IEC 60115-1, 4.8: Test of resistors at room temperature and 60°C or 100°C on request above room temperature. Then measure the resistance. The Temperature Coefficient is calculated by the following equation and its value should be within the range requested.

Resistor Temperature Coefficient =
$$\frac{R - R_0}{R_0} \times \frac{1}{t - t_0} \times 10^6$$

R = Resistance value under the testing temperature R_0 = Resistance value at the room temperature

t = the 2^{nd} testing temperature

t₀ = Room temperature

(4) Short Time Over Load Test

IEC60115-1 4.13: At 2.5 times rated voltage or 2 times the maximum working voltage whichever is lower, 5 seconds on and 45 seconds off, 10 cycles. The resistor should be free from defects. The change of the resistance value should be within $\pm(0.5\%)$ as compared with the value before the test.

(5) Solderability

IEC 60115-1, 4.17: $235\pm5^{\circ}$ C for 3 ± 0.5 Seconds, there are at least 95% solder coverage on the termination.

IEC 60115-1, 4.26: 4 times RCWV for 1 Minute. No evidence of flaming or arcing

IEC 60115-1, 4.24: 40±2°C, 90-95% RH for 56 days, loaded with 0.1 times RCWV or the maximum working voltage whichever is lower. The change of the resistance value should be within $\pm(5.0\%)$ as compared with the value before the

IEC 60115-1, 4.25: 70±2°C at RCWV or the maximum working voltage

should be within $\pm(5.0\%)$ as compared with the value before the test.

whichever is lower for 1,000+48/-0 Hr. (1.5Hr. on, 0.5Hr. off). The resistors shall be arranged not much effected mutually by the temperature of others and the excessive ventilation shall not be performed. The change of the resistance value

from the body. The change of the resistance value should be within $\pm (0.50\%)$ as

(7) Climatic sequence

(8) Damp Heat Steady State

test.

(9) Load Life Test

IEC 60115-1, 4.19: The climatic sequence test cycle is shown in the following table. The measurement of the resistance value is done before the first cycle at room temperature and 1 hours leaving in the room temperature after the fifth cycle, the change of the resistance shall be within \pm (1.50%). After the test the resistors shall be free from the electrical or mechanical damage.

damp heat,	55℃;24h; ≥90% RH				
cyclic	1 cycle;				
cold	LCT; 2 h				
low air	8.5 kPa				
pressure	25±10℃ 2h;				
damp heat	55°C;24h; ≥90% RH ;				
cyclic	5 cycles				
	LCT=-55°C;				
	UCT=155℃				

UCT; 16 h

compared with the value before the test.

dry heat

IEC 60115-1, 4.18: 260±3°C for 10±1 Seconds, immersed to a point 3±0.5mm

(6) Resistance to soldering heat:

(11) Surge compatibility test

IEC 60115-1, 4.27: Surge voltage capability up to maximum10 kV 1.2/50 μ s pulse, 5 pulses at 12 s intervals; for permissible resistance change ± (0.5 %)

IEC 60115-1, 4.27: Surge voltage capability up to maximum 10 kV 10/700 μ s pulse, 10 pulses at 1 m intervals; for permissible resistance change ± (0.5 %)

The pulse loading voltage see the following graphs:

(12) High voltage high pulse overload

IEC 60115-1, 4.28: Apply 10 pulses with 10 times rated voltage or 2 times the maximum working voltage whichever is lower to the resistor, the pulses parameter is 10μ s/700 μ s. The change of the resistance shall be within ± (2.0%).

(13) Resistance to Solvent

IEC 60115-1, 4.30: IPA for 5±0.5 Min. with ultrasonic. No deterioration occurred.

(14) Electrostatic discharge (ESD human body mode)

IEC 60115-1, 4.40: Apply 3 negative and 3 positive discharges on resistors, discharge voltage 6000V on 0204 size and 16,000V on 0207 size and 0411 size and 0617 size (equivalent to MIL-STD-883, method 3015). The change of the resistance value should be within \pm (0.50%) as compared with the value before the test.

Disclaimer

All products, product specifications and data are subject to change without notice to improve reliability, function or design or otherwise.

Thunder Precision Resistors makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product to the maximum extent permitted by applicable law.