BL3—B Series Parallel Elevator Controller User Guide

Doc No. IEC-30.01-111212

Content	1
FOREWORD	9
Chapter 1 SAFETY INFORMATION	1
1.1. LABEL DESCRIPTION	1
1.2. SAFETY PRECAUTIONS	1
1.3. Warning Labels on the Inverter	5
Chapter 2 Introduction and Installation	
2.1. Inverter Model Numbers	
2.2. Nameplate Information	6
2.3. Inverter Specifications	7
2.4. Product Appearance	9
2.5. Exterior Dimension	
2.5.1. Open Type Inverters	
2.5.2. Close Type	
2.6. Confirmation upon Delivery	
2.7. Installation	
2.7.1. Installation Site	
2.7.2. Temperature Requirement	
2.7.3. Protect the inverter from Foreign Obj	ect14
2.7.4. Removing and attaching the Terminal	Cover14
2.7.5. Remove/Attach Hand operator	
2.7.6. Installation Orientation and Space	
2.8. Equip Brake Resistor	
2.9. Product Function	
Chapter 3 Wiring	

Content

3.1. Connection Diagram for Elevator Integrated Controller	25
3.2. Wiring Main circuit Terminals	26
3.2.1. Main circuit structure	26
3.2.2. Terminal arrangement for Main circuit	26
3.2.3. Main circuit terminal summary and function instruction	27
3.2.4. Wire specification for main circuit wiring	27
3.2.5. Main circuit wiring	28
3.3. Wiring Control Circuit Terminals	29
3.3.1. Terminal Arrangement for Control Circuit	29
3.3.2. Terminal Connection for Control Circuit (Figure 3.1)	30
3.3.3. Control Circuit Port definition and Function	30
3.3.4. Wire size for Control Circuit Terminals	32
3.3.5. Control Circuit I/O interface and wiring	33
3.4. PG Card Installation & Wiring	35
3.4.1. PG_V31 Interface Card	35
3.4.2. Installation and Remove PG_V31	35
3.4.3. PG_V31 Terminal Definition & Function List	36
3.4.4. PG_V31 Connection for 12V push-pull/OC output encoder (for Asynchronous Machine)	37
3.4.5. PG_V31 card connection with 5V long cable drive output encoder (for Asynchronous Machine)	37
3.4.6. PG_V31 card connection with 5V long cable drive output encoder (for Synchronous Machine)	38
3.4.7. Precautions for using PG_V31 card	38
3.4.8. SPG_V33 Interface Card	39
3.4.9. SPG_V33 Interface Card Terminal Definition and Function List	39
3.4.10. SPG_V33 Interface Card Circuit	40
3.4.11. Precautions for using SPG_V33	40
3.5. Precautions with Wiring	41

Chapter	4 Operator	. 42
4.1.	Key, display and function of Operator	42
	4.1.1. Operator LED Display	42
	4.1.2. Operator Keys	43
	4.1.3. LCD Display	44
	4.1.4. Function of Operator	45
	4.1.5. Installation and Connection of Operation	45
4.2.	Structure flowchart of Operator menu	46
4.3.	Parameter Setting	47
4.4.	Commissioning Parameters	48
4.5.	Save Parameter	50
4.6.	Hoistway Learning	50
4.7.	Motor Auto-tuning	51
4.8.	Motor Load Tuning	51
4.9.	Time Setting	52
4.10). Fault Record Check	52
4.11	. Environment Initialization	53
4.12	2. Parameter Copy	55
4.13	8. Restore to Factory Setting	55
4.14	l. Blue-Light Traction machine Parameter Input	56
Chapter	5 Parameters	. 57
5.1.	Parameters Function Classifications	57
5.2.	Parameters Hierarchical Structure	57
5.3.	Monitoring Parameters	58
	5.3.1. Hoistway Location (U0)	58
	5.3.2. Monitoring Parameter for I/O Status, Cabin Signal & Interference Appraisal (U1-U5)	59

5.3.3. Drive Monitoring Parameters	60
5.4. Parameters setup Function Instruction	60
5.4.1. Building Setup Parameters (F0)	60
5.4.2. Parameters for Running Setup (F1)	61
5.4.3. Time Setup Parameters (F2)	63
5.4.4. Input type setup Parameters (F3)	65
5.4.5. Service Setup Parameters (F4)	66
5.4.6. Motor Setup Parameters (F5-F6)	66
5.4.7. Multiple PI Setup Parameters (F7)	67
5.4.8. Encoder Setup Parameters (F8)	68
5.4.9. Control Setup Parameters (F9)	68
5.4.10. No-load Compensation Setup Parameters (FA)	68
5.4.11. Special Parameters (FC)	69
5.4.12. Environment Setup Parameters (A)	69
Chapter 6 Parameters Setup	70
6.1. Elevator Running Speed Setup	70
6.1.1. Elevator Rated Speed, Motor Rated Speed, Encoder pulses Setup	70
6.1.2. Inspection Run Speed	70
6.1.3. Rescue Speed	70
6.1.4. Least Speed	71
6.2. Normal Running Speed Curve	71
6.3. Elevator Running Timing Diagram	72
6.3.1. Timing Diagram for Normal Running	72
6.3.2. Timing Diagram for Inspection Running	74
6.3.3. Timing Diagrams for Rescue Running	75
6.3.4. Timing Diagram for Recalibration Running	75

6.4. Door Control	76
6.4.1. Door Open/Close Control	76
6.4.2. Door Open Holding Time	77
6.4.3. Door Control in Attendant and Special use mode	77
6.4.4. Door Control in Inspection, Fire mode	77
6.5. Homing Function Setup	77
6.6. Parking Function Setup	77
6.7. Fireman Operation Function Setup	78
6.8. Rear Door Control Setup	78
6.8.1. Different Mode Selection	78
6.8.2. Rear Door Condition Setup	80
6.9. Input Type Setup	80
6.10. Service Floor Setup	81
6.11. Weighing Device Setup	81
6.12. Duplex Control Setup	82
6.13. Group Control Setup	82
6.14. Leveling Adjustment Setup	82
6.15. Floor Indication Setup	82
6.16. Special Function Selection	83
6.17. Motor Parameters Setup	84
6.18. Elevator Running Speed Setup	84
6.19. Speed Control Setup (PI Adjustment)	85
6.19.1. Speed Control Setup with Single PI Adjustment	85
6.19.2. Speed control Setup with Multi-Section PI Adjustment	85
6.20. Load-Compensation Torque Output Setup	86
6.21. Encoder Parameters Setup	87

6.22. Start without Load Compensation Setup	
Chapter 7 Commissioning	
7.1. Important Reminder	
7.2. Inspections before Power On	
7.3. Power On and Inspection	
7.3.1. Things need to confirm before Power On	
7.3.2. Inspection after Power On	
7.4. Parameter Setup	
7.5. Motor Parameters Tuning	
7.5.1 Motor Rotation Tuning	
7.5.2 Motor Static Tuning	
7.6. Motor Initial Angle Tuning	
7.6.1. Tuning Procedures for Machine with Incremental Encoder	
7.6.2. Tuning Procedures for Motor with Sine/Cosine Encoder	
7.6.2.1 Rotation Tuning	
7.6.2.2 Static Tuning	
7.7. Inspection Running	
7.7.1. Inspection Running in Machine Room	
7.7.2. Inspection Running on Car Top/Cabin	
7.8. Hoistway Learning	
7.9. Normal Speed Running	
7.10. Elevator Comfort Level Adjustment	
7.10.1. Adjustment for Start/Brake speed curve	
7.10.2. Follow & Adjust Running Curve	
7.10.3. Control Timing Adjustment	
7.11. Leveling Precision Adjustment	

7.11.1. Basic Conditions for Elevator Leveling	
7.11.2. Leveling Parameter Adjustment	
7.12. Terminal Switch Position	
Chapter 8 Troubleshooting	101
8.1. Elevator System Faults	
8.2. Hoistway Parameter Self-Learning Faults	
8.3. Driver Faults	
8.4. Motor Initial Angle Tuning Faults	
8.5. Motor Parameters Tuning Faults	
Chapter 9 Maintenance	109
9.1. Safety Precautions for Drive Maintenance & Storage	
9.2. Daily Check	
9.3. Routine Inspection	
9.4. Quick Wear parts	
9.5. Warranty	
Chapter10 Controller installation with EMC Standard	111
10.1. EMC Briefing	
10.2. EMC Characteristics of Integrated Controller	
10.3. EMC Installation Guide	
10.3.1. Noise Control	
10.3.2. Wiring	
10.3.3. Ground Connection	
10.3.4. Leakage Current	
10.3.5. Power Line Filter	
10.4. EMC standard satisfied by Integrated Controller	
Chapter 11 Accessories	115

11.1. Eleva	ator Parallel Connection Extension Board (BL2000-EBA)	115
11.1.	1. Function	115
11.1.	2. Terminal Definition & Specification	115
11.2. Eleva	ator Group Control Board BL2000-QKB-V1	117
11.2.	1 Function	117
11.2.	2 Application	117
11.2.	3 Terminal Specification	117
11.2.	4 Interface Circuit	118
11.2.	5 Terminal Definition & Specification	118
Appendix 1	Hoistway Switches Information (partly)	119
Appendix 2	Parameters List	121
Appendix 3	Hoistway Parameter Learning Flowchart	125
Appendix 4	Motor Initial Angle Static Tuning Flowchart	126

FOREWORD

Thank you for using BL3-B series elevator controller. BL3 series elevator integrated controller is the next generation elevator control system developed by Shenyang Bluelight Automatic Technology CO. LTD. It combines elevator intellectual logic control and high-performance VVVF drive control. With user friendly interface and advanced technology integrated together, the system not only has outstanding performance, but also shows strong reliability in practice.

- The system combines intellectual logic control and high-performance VVVF drive control.
- Adopts advanced vector control technology, demodulates motor with high precision, takes full advantage of motor capacity, improves elevator performance and comfort feel.
- Adopts advanced space vector PWM calculation method, compare with traditional sine/cosine PWM method, it improves elevator operation efficiency and saves more energy.
- ◆ Adopts full function of BL2000/3000 system, maximize the performance of elevator in different application.
- When using Bluelight Synchronous machine, controller could pre-define the machine type with the most optimized model, save machine parameter input and auto-tuning process, improves the commissioning efficiency and maximize the machine performance.
- Fuzzy logic control with non-load-compensation start-up. Excellent comfort feels without lift weighing device.
- Rotating or stopping auto-tuning to get motor parameters and initial angle.
- Suitable for both gearless PM Synchronous traction machine and asynchronous induction machine.
- Brake units are built in for the whole BL3-B series to reduce external component cost.
- Internal encoder and frequency dividing interface to match different PG signal.
- Advanced double 32 bit CPU and FPGA for complete elevator control, with high reliability on elevator safety.
- Redundancy design and full software-hardware protection to achieve elevator safety and reliability.
- Passed professional EMC test, suitable for complicated job site.
- Monitor the cutting current from controller to main motor every time elevator stops.
- Generate optimized speed curve based on target floor to enable lift stop directly with high efficiency.
- Adopts wireless/LAN remote control interface, convenient for long distance commissioning, maintenance and elevator monitoring.
- Equips upper monitoring and software, convenient for parameter setting, commissioning and debugging.
- Data recorder to save integrated controller operation data, help for onsite maintenance /trouble shooting.
- Parameter upload, download and copy to help onsite maintenance.
- Support ARD function with only UPS unit.
- Match GB7588-2003 (equivalent to EN-81) safety standard.

This user guide has introduced on how to use BL3-B series elevator controller. Please read it carefully and understand safety items before use (installation, running maintenance). This user guide is for elevator designer, installation and maintenance technician. The installation, commissioning and maintenance must be performed by train technician.

The intellectual property of this user guide is owned by Shenyang Bluelight Group. Any information from this user guide should not be copied without permission.

 $\left[\right]$

Chapter 1 SAFETY INFORMATION

1.1. LABEL DESCRIPTION

The following conventions are used to indicate precautions in this user guide. Failure to notice the precautions provided in this user guide can result in serious or even fatal injury to damage to the products or to related equipment and systems.

Indicates precautions that if not heeded could possibly result in loss of life or serious injury.

Indicates precautions that if not heeded could result in relatively serious or minor injury to the operator and damage to the product. Also, it should be noted that even for precautions, in certain situations could result in serious accident.

Indicate important information that should be memorized.

1.2. SAFETY PRECAUTIONS

•	Confirmation upon Delivery
\diamond	Never install an integrated controller that is damaged or missing components.
	Doing so can result in injury.

Installation

\diamond	Always hold the case when carrying the integrated controller	
	Otherwise the integrated controller may drop and damage.	
\diamond	Please install the device to a metal surface or other non-flammable objects	
	Otherwise there is a fire-hazard potential.	
\diamond	Please mount the device to an object that are strong enough.	
	Otherwise the integrated controller may drop and damage.	
\diamond	Please install the device in a dry place where water or rain could not get into.	
	Otherwise the integrated controller could get damaged.	
\diamond	For the same cabinet to install the integrated controller and brake resistor, install cooling	
	fan or other cooling device and make sure the air temperature entering is below $45^\circ C$	
	Overheat can result in fires or other accidents.	
\diamond	Do not leave any metallic objects inside the integrated controller	
	Otherwise it may damage the device and has fire-hazard potential.	

•	W	iring

N WARNING ◇ Always turn OFF the input power supply before wiring terminals. Otherwise, an electric shock or fire can occur. \diamond Wiring must be performed by an authorized person qualified in electrical work. Otherwise, an electric shock or fire can occur. \diamond Be sure to ground the ground terminal. (200 V Class: Ground to 100 Ω or less, 400 V Class: Ground to 10 Ω or less) Otherwise, an electric shock or fire can occur. \diamond Always check the operation of any fast stop circuits after they are wired. Otherwise, there is the possibility of injury. (Wiring is the responsibility of the user.) \diamond Never touch the output terminals directly with your hands or allow the output lines to come into contact with the Inverter case. Never short the output circuits. Otherwise, an electric shock or ground short can occur. \diamond Do not use the Inverter for any load other than a three-phase AC motor. • A permanent magnet motor is a type of permanent magnet motor with a rotor in which a magnet is integrated. Unlike an induction motor, the permanent magnet motor terminal generates high voltage when the motor is running, even when the Inverter power is shut off. Be sure to completely stop the motor before wiring, maintenance and inspection. Failure to do so may result in electric shock.

 \diamond Check to be sure that the voltage of the main AC power supply satisfies the rated voltage of the Inverter. Injury or fire can occur if the voltage is not correct. O not perform voltage withstand tests on the Inverter. Otherwise, semiconductor elements and other devices can be damaged. \diamond Connect braking resistors, Braking Resistor Units, and Braking Units as shown in the I/O wiring examples. Otherwise, a fire can occur and the Inverter, braking resistors, Braking Resistor Units, and Braking Units can be damaged. Tighten all terminal screws to the specified tightening torque. Otherwise, a fire may occur. Do not connect AC power to output terminals U, V, and W. The interior parts of the Inverter will be damaged if voltage is applied to the output terminals. Do not connect phase-advancing capacitors or LC/RC noise filters to the output circuits. The Inverter can be damaged or interior parts burnt if these devices are connected. \diamond When a magnetic contactor is connected to the output circuits, do not switch it ON and OFF while the Inverter is running. Surge current will cause the over current protection circuit inside the Inverter to operate. Do not make terminal f"fewf@/ P1 and f"f-f@ short link. Otherwise, a fire or explode may occur.

Trial Operation

Check to be sure that the front cover is attached before turning ON the power supply.
 Otherwise, an electric shock may occur.

On not get close to machine and related objects when choosing the error auto reset function, as the drive will automatically restart after warning reset.

Otherwise, an injury may occur.

Provide a separate fast stop switch; the Digital Operator STOP Key is valid only when its function is set.

Otherwise, an Injury may occur.

- Reset alarms only after confirming that the RUN signal is OFF.
 Otherwise, an Injury may occur.
- Do not perform fault operation and signal checking while the drive is running.
 Otherwise an injury may occur and the drive may get damaged.

\diamond	Do not touch the radiation fins (heat sink), braking resistor, or Braking Resistor Unit. These
	can become very hot.
	Otherwise, a burn injury may occur.
\diamond	Be sure that the motor and machine is within the applicable ranges before starting
	operation.
	Otherwise, an injury may occur.
\diamond	Provide a separate holding brake if necessary. Always construct the external sequence to
	confirm that the holding brake is activated in the event of an emergency, a power failure,
	or an abnormality in the Inverter.
	Failure to observe this caution can result in injury.
\diamond	If using an Inverter with a elevator, take safety measures on the elevator to prevent the
	elevator from dropping.
	Failure to observe this caution can result in injury.
\diamond	Do not check signals while the Inverter is running.
	Otherwise, the equipment may be damaged.
\diamond	Be careful when changing Inverter settings. The Inverter is factory set to suitable settings.

Otherwise, the equipment may be damaged.

Maintenance and Inspection

\diamond	Do not touch the Inverter terminals. Some of the terminals carry high voltages and are
	extremely dangerous.
	Doing so can result in electric shock.
\diamond	Always have the protective cover in place when power is being supplied to the Inverter.
	When attaching the cover, always turn OFF power to the Inverter through the MCCB.
	Doing so can result in electric shock.
\diamond	After turning OFF the main circuit power supply, wait for the time indicated on the front
	cover, and make sure the CHARGE indicator light has gone out, and then perform
	maintenance and inspection.
	The capacitor will remain charged and is dangerous.
\diamond	Maintenance, inspection, and replacement of parts must be performed only by authorized
	personnel. Remove all metal objects, such as watches and rings, before starting work.
	Always use grounded tools.
	Failure to heed these warning can result in electric shock.
\diamond	Be sure to completely stop the permanent magnet motor before maintenance and
	inspection.
	Failure to do so may result in electric shock.

A CMOS IC is used in the control board. Handle the control board and CMOS IC carefully.
 The CMOS IC can be destroyed by static electricity if touched directly.

◇ Do not change the wiring, or remove connectors or the Digital Operator, during operation.
 Doing so can result in personal injury.

• Other

	WARNING
\diamond	Do not attempt to modify or alter the Inverter.
	Doing so can result in electrical shock or injury.

\diamond	Do not subject the Inverter to halogen gases, such as fluorine, chlorine, bromine, and				
	iodine, at anytime even during transportation or installation.				
	Otherwise, the Inverter can be damaged or interior parts burnt.				

1.3. Warning Labels on the Inverter

Be sure to read and follow all warning labels on the Inverter before installation.

Text on Warning Labels

FIGURE 1.3 WARNING LABEL CONTENT

Chapter 2 Introduction and Installation

This chapter describes the checks required upon receiving or installing an Inverter.

2.1. Inverter Model Numbers

The model number of the Inverter on the nameplate indicates the specification, voltage class, and maximum motor capacity of the Inverter in alphanumeric codes. Please see below figure 2.1 for example (22kw

2.2. Nameplate Information

Nameplate information can be seen in figure 2.2 below.

There is a nameplate attached to the side of each Inverter. The nameplate shows the model number, specifications, lot number, serial number, and other information about the Inverter.

Example

The following nameplate is an example for a standard BL3-B Inverter: 3-phase, 400 VAC, 22Kw.

MODEL: BL3-BC4022	POW:22KW
INPUT: AC3PH 380V 501	Hz 58A
OUTPUT: AC3PH 0-380V	0-50Hz 48A
S/N:	MASS: 20Kg
(bar code)	

FIGURE 2.2 NAMEPLATE

2.3. Inverter Specifications

BL3—U series elevator integrated controller specifications are listed in the following tables.

TABLE **2.1** STANDARD SPECIFICATIONS

Mod		4005	4007	4011	401	.5	4018	4022	4030	4037	4045
	MOTOR POWER (KW)	5.5	7.5	11	15	;	18.5	22	30	37	45
ь	RATED OUTPUT POWER (KVA)	9	12	18	22	2	27	32	43	53	63
три	RATED OUTPUT CURRENT (A)	14	18	27	34	Ļ	41	48	65	80	96
	MAX OUTPUT VOLTAGE (V)	3-phase, AC380 (match the input voltage)									
АТЕІ	RATED FREQUENCY (HZ)	50									
R	MAX OUTPUT FREQUENCY (HZ)										
	RATED VOLTAGE (V)	3-phase	e AC380								
WER	RATED FREQUENCY (HZ)	50									
тро	RATED INPUT CURRENT (A)	17	22	32	41		49	58	78	96	115
.N d N	VOLTAGE DISTORTION ALLOWED	±15%		·							
-	FREQUENCY DISTORTION	±5%									
MODEL BL—B=20==		200)3	2005			2007		2011	2	015
ΜΑΧ	MOTOR POWER(KW)	3.7	7	5.5			7.5		11		15
F	RATED OUTPUT POWER(KVA)	7		10			14		20		27
три	RATED OUTPUT CURRENT (A)	17.	5	25			33		49		66
	MAX OUTPUT VOLTAGE (V)	3-phase, AC380 (match the input voltage)									
АТЕІ	RATED FREQUENCY (HZ)	50									
MAX OUTPUT FREQUENCY (Hz) 120											
	RATED VOLTAGE (V)	3-phase	e AC380								
WEF	RATED FREQUENCY (HZ)	50									
тро	RATED INPUT CURRENT (A)	21 27 40 52							68		
NPU	VOLTAGE DISTORTION ALLOWED	±15%									
-	FREQUENCY DISTORTION	±5%									
	CONTROL METHOD	Simplex	Collect	ive, Duple	x Coll	lectiv	ve, 3~8 ι	units Gro	oup Contr	ol	
្ល	ELEVATOR SPEED RANGE	0.5~4r	n/s								
LURE	MAX FLOOR	64									
FEA'	APPLICABLE ELEVATOR	Passenger, Hospital, Panoramic, Goods, Villa Elevator									
ASIC	APPLICABLE TRACTION MACHINE	Gear Traction Machine, Gearless Traction Machine									
B,	COMMUNICATION	CAN BUS serial communication									
	LEVELING PRECISION	≤3mm									
	CONTROL METHOD	Space v	ector P	WM (SVP	WM)	Clos	se loop v	ector co	ontrol		
s	CARRIER FREQUENCY	8KHz (6	$5{\sim}15$ KH	Hz Adjusta	ble)						
URE	SPEED CONTROL RANGE	1:1000									
IVE FEAT	SPEED CONTROL ACCURACY	±0.05%	ő (25°	C±10°C)							
ď	SPEED RESPONSE	30Hz									
	TORQUE LIMIT	Available (Parameter setting)									

	TORQUE ACCURACY	±5%			
	FREQUENCY CONTROL RANGE	0~120Hz			
	FREQUENCY ACCURACY	Digital given: ±0.01% (−10°C~+40°C)			
	FREQ GIVEN RESOLUTION	Digital given: 0.01Hz			
URES	FREQ OUTPUT RESOLUTION	0.01Hz			
EAT	OVERLOAD CAPACITY	150% rated current 60S; 180% rated current 10S			
IVE F	START UP TORQUE	180% rated current 0Hz			
DRI	ACCEL/DECEL TIME	0.001~600s			
		Non-load-compensation start up; Battery-driven running; Auto-tuning; load compensation;			
		cooling fan control; basic blocking; torque control; CAN communication reference; Normal			
	MAIN CONTROL FUNCTION	Acc/Dec; s-curve speed; monitor of main machine for which electric current can be			
		effectively interdict or not when the car stops; interior brake unit; PG dividing frequency			
		output, automatic retrying after fault; automatic resetting after fault; parameter copying.			
	OC CONTROL POWER SUPPLY	Isolated external DC24V			
LPUT	RELAY OUTPUT POWER	Isolated external DC24V			
LUO/	LOW VOLTAGE OC INPUT	26 outputs, rated load: 7mA / DC24V,100HZ max			
PUT/	HIGH VOLTAGE OC INPUT	6 outputs, rated load: 8mA / AC110V,100HZ max			
LIN	PLC RELAY OUTPUT	12 outputs $$ 1NO, contactor rated: 5A $/$ 30VDC $_{\sim}$ 5A $/$ 250VAC			
TRO	CAN BUS	2 ports: Duplex; group control; HOP; COP; Wireless monitoring			
CON	SERIAL COM	1 port: Hand operator			
	RS232 COM	2 ports: Monitor/Program			
SP	HAND OPERATOR	Chinese/English LCD display			
ā	MONITOR INTERFACE	Display parameters, elevator running status, digital wave			
	OVER CURRENT	Stop when current exceed 200% rated output current			
	FUSE	Stop at fuse brake at main circuit			
	OVER LOAD	Stop at 150% rated current 60S or 180% rated current 10S			
	OVER VOLTAGE	Stops when main bus voltage over 789V(400V level)			
	UNDER VOLTAGE	Stops when main bus voltage is lower than 380V $(400V \text{ level})$			
	HEAT SINK OVER TEMPERATURE	Via electric heat sensor			
7	IPM INNER PROTECTION	IPM OC; overheat; short circuit; under voltage protection			
	MOTOR PROTECTION	Protects through electric heat sensor			
отес	IMPACT RESTRAINING CIRCUIT	Protects through contactor feedback signal			
N PR	OVER SPEED	Protects while motor speed is exceeding the max set value			
MAIR	SPEED DEVIATION	Protects while speed deviation is over setting value			
	PG FAULT	Protects while PG disconnect or phase error			
	AUTO-TUNING FAULT	Protects while a fault generates during motor auto-tuning.			
	PHASE LOST	Protects while input/output power loose phase			
	DOOR INTERLOCK FAULT	Protects while door interlock circuit breaks during elevator operation			
	SAFETY CIRCUIT FAULT	Protects while safety circuit breaks during elevator operation			
	BRAKE CIRCUIT FAULT	Protects when output brake signal but receive no feedback			
	LEVELING ZONE FAULT	Protects when leveling zone signal is wrong			

TABLE 2.1 STANDARD SPECIFICATION (CONT'D)

	OUTPUT CONTACTOR ERROR	Protects when output contactor does not work properly
,		Protects when run time over setting value for one trip
JAI		Protects when floor counting is wrong
2	COMM. INTERFERENCE	Protects when communication error due to interference
	HOISTWAY LEARNING ERROR	Protects when hoistway learning fails
	PROTECTION CLASS	C: Closed type IP20; O: Open type IP00
d o f	COOLING METHOD	Forced air cooling
<	INSTALLATION	Wall mounting (inside cabinet)
	AMBIENT TEMPERATURE	-10°C~+40°C
	Нимідіту	5~95%RH, non-condensing
NIMEN	STORAGE TEMPERATURE	-20°C~+60°C
FNVI		In doors, without direct sunlight, dust, corrosive/explosive gases, oil fog, vapor, water dripping, or salty substances
	ALTITUDE	<1000M
4	VIBRATION	10~20Hz,<9.8m/S ² ; 20~50Hz, <2m/S ²

TABLE 2.1 STANDARD Specification (CONT'D)

2.4. Product Appearance

BL3—U series elevator drive has open type and close type and the open type has wall-mounted installation and inserted installation type.

FIGURE 2.3 CLOSED TYPE

FIGURE 2.4 OPEN TYPE INSERTED INSTALL

FIGURE 2.3 OPEN TYPE WALL-MOUNT

2.5. Exterior Dimension

BL3—U series elevator drive has open type and close type and the open type has wall-mounted installation and inserted installation type.

2.5.1. Open Type Inverters

2.5.1.1 OPEN TYPE WALL MOUNTED

FIGURE 2.6 OPEN TYPE WALL-MOUNT DIMENSION

FIGURE 2.7 EXTERIOR DIAGRAMS

2.5.1.2 OPEN TYPE INSERTED

FIGURE 2.8 OPEN TYPE INSERTED DIMENSION

FIGURE 2.9 OPEN TYPE INSERTED EXTERIOR

FIGURE 2.10 OPEN TYPE INSERTED DIMENSION

FIGURE 2.11 OPEN TYPE INSERTED EXTERIOR

TABLE 2.2 OPEN TYPE INVERTER EXTERIOR DIMENSION

	no	Max			Exterior Dimension							
Voltage	Installati	Motor Power (KW)	Inverter Model	Figure	w	н	D	W1	H1	H2	D1	Weight kg
		5.5	BL3-BO4005									16
		7.5	BL3-BO4007		260	272		200	250			16
	p	11	BL3-BO4011		200	575	203	200	556			16
	unte	15	BL3-BO4015	2.6			205					16
	Moi	18.5	BL3-BO4018	ure							0	18
	vall-	22	BL3-BO4022	Fig	320	463		270	448			18
	5	30	BL3-BO4030				235			- 8.5		20
ase		37	BL3-BO4037		200	650	200	240	600			35
-bh		45	BL3-BO4045		390	650	300	540				35
0A 3		5.5	BL3-BO4005	×	260	272	203	200	358			16
40		7.5	BL3-BO4007	e 2.							F7 F	16
	Inserted	11	BL3-BO4011	igur		5/5					57.5	16
		15	BL3-BO4015									16
		18.5	BL3-BO4018	Figure 2.10	320 390	463 650	27				59	18
		22	BL3-BO4022					270	448			18
		30	BL3-BO4030				235					20
		37	BL3-BO4037				300	240	40 600		136	35
		45	BL3-BO4045					540				35
	p	3.7	BL3-BO2003		260				358	8.5		16
	unte	5.5	BL3-BO2005	2.6		373	203	200				16
	Moi	7.5	BL3-BO2007	ure							0	16
ase	/all-	11	BL3-BO2011	Fig	220	162		270	110			18
:4d-	\$	15	BL3-BO2015		320	405		270	448			18
0V 3		3.7	BL3-BO2003	Ð								16
20(eq	5.5	BL3-BO2005	igur 2.8	260	373	203	200	358		57.5	16
	erte	7.5	BL3-BO2007	ш								16
	Ц	11	BL3-BO2011	Figure	220	162		270	110		50	18
		15	BL3-BO2015	2.10	520	405		270	448		59	18

2.5.2. Close Type

FIGURE 2.12 CLOSE TYPE DIMENSION

 TABLE 2.3 CLOSE TYPE INVERTER EXTERIOR DIMENSION

Max Motor

Power (KW)

5.5

Voltage

	7.5	BL3-BC4007	200		226	130			16
٩	11 BL3-BC	BL3-BC4011	200						16
has	15	BL3-BC4015		460	230		445		16
.3-p	18.5	BL3-BC4018				170		8.5	18
400V	22	BL3-BC4022	320						18
	30	BL3-BC4030			270				20
	37	BL3-BC4037	200	650	200	240	600		35
	45	BL3-BC4045	390	050	500	540	000		35
٩	3.7	BL3-BC2003							16
has	5.5	BL3-BC2005	280			130			16
3-p	7.5	BL3-BC2007		460	236		445	8.5	16
V00.	11	BL3-BC2011	220			170			18
5	15	BL3-BC2015	520			1/0			18

2.6. Confirmation upon Delivery

Check below items when receiving the products.

TABLE 2.4 THINGS TO CHECK UPON DELIVERY

Notes	Метнор
Has the correct model of inverter been delivered?	Check the model number on the nameplate.
Inverter damaged in any way?	Check exterior for any damaged caused by shipment.
Any screws or other components loose?	Use a screwdriver to check for tightness.
Open terminal cover, control board loose?	Use a screwdriver to check for tightness.

 \diamond If find any irregularities in the above notes, contact the local agencies immediately.

2.7. Installation

2.7.1. Installation Site

Install the inverter in an environment which meets the condition described in table 2.5

Table 2.5	Environment	requirement	on	installation
	LINNOULICIT	requirement	011	mation

Туре	Installation Method Ambient Temperature		Ambient Humidity				
Open	Wall-mounted/Insert	-10 °C~+45 °C	5~95%RH (No condensation)				
Close	Wall-mounted	-10 °C~+40 °C	5~95%RH (No condensation)				

Take care and confirm the following items while installing

- 1. Install the Inverter in a clean location which is free from oil mist and dust, or it can be installed in a fully closed control panel which is completely shielded from floating dust.
- 2. When installing or operating the Inverter, alwaystake special care so that metal powder, oil, water, or other foreign matter does not get into the Inverter.
- 3. Do not install the Inverter on combustible material, such as wood.
- 4. Install the Inverter in a location free from radioactive materials and combustible materials.
- 5. Install the Inverter in a location free from harmful gas and liquid.
- **6.** Install the Inverter in a location without excessive vibration.
- 7. Install the Inverter in a location free from chlorides.
- 8. Install the Inverter in a location without direct sunlight.

2.7.2. Temperature Requirement

To enhance the reliability, the Inverter should be installed in an environment free from extreme temperature incr easing. If the Inverter is installed in a closed environment, such as a cabinet, use a cooling fan or air conditioner to main tain the internal air temperature below 45°C.

2.7.3. Protect the inverter from Foreign Object

Place a cover over the Inverter during installation to shield it from metal powder produced by drilling. Always re move the cover from the Inverter after the completion of the installation. Otherwise, ventilation will be reduced, causi ng the Inverter to overheat

2.7.4. Removing and attaching the Terminal Cover

Follow figure 2.14–2.15. Note the open type BL3-B integrated controller terminal cover and front cover are the same.

• REMOVE TERMINAL COVER

Release the screw at the terminal cover, open the cover based on arrow direction to release the cover for wiring.

INSTALL FRONT COVER

After all the wiring procedures, follow the opposite method of removing terminal cover to tighten the front cover.

Figure 2.14 Remove terminal cover on close type

2.7.5. Remove/Attach Hand operator

Follow Figure 2.16.

• Remove the hand operator

Figure 2.15 Remove Terminal cover on open type

Push side of hand operator on arrow 1 to unlock the operator from the frond cover, pull the operator up on the direction of arrow 2.

• Install Hand operator

Opposite with remove procedures

Figure 2.16 Removing Digital Operator

2.7.6. Installation Orientation and Space

Install the Inverter vertically so as not to reduce the cooling effect. When installing the Inverter, always provide the following installation space to allow normal heat dissipation.

Figure 2.17 Driver Installation Orientations and Space

1. The same space is required horizontally and vertically for both open type and close type wall-fixd inverter.

2. Always remove the protection covers before installing inverter with an output terminal in a pane I. Always provide enough space for suspension bolts and the main circuit lines when installing invert er with an output terminal in a panel.

2.8. Equip Brake Resistor

Elevator is a typically potential energy load type device. When the elevator is at brake mode, the electricity feedback of motor brake will make the DC bus voltage increase. Energy can release by allocate suitable brake component. If not, over-voltage protection will be activated. BL3-B series elevator controller has internal brake unit, so customers only need to equip suitable brake resistance. Allocation resistance varies with the value of drive power.

The detailed specification of brake resistance refers to table 2.6.

Model	Motor Power (kW)	Braking Resistor value for Synchronous Machine (Ω/W)	Braking Resistor value for Induction Machine (Ω/W)
BL3-B□4005	5.5	75Ω/2000W	75Ω/1000W
BL3-B□4007	7.5	65Ω/2500W	65Ω/1000W
BL3-B□4011	11	40Ω/3500W	40Ω/2000W
BL3-B□4015	15	30Ω/ 6000W	30Ω/ 4000W
BL3-B□4018	18.5	25Ω/6000W	25Ω/4000W
BL3-B□4022	22	20Ω/9000W	20Ω/6000W
BL3-B□4030	30	16Ω/11000W	16Ω/8000W
BL3-B□4037	37	12Ω/15000W	12Ω/15000W
BL3-B□4045	45	10Ω/15000W	10Ω/15000W
BL3-B□2003	3.7	30Ω/ 2000W	30Ω/ 2000W
BL3-BD2005	5.5	24Ω/ 2000W	24Ω/ 2000W
BL3-B 2007	7.5	20Ω/ 4000W	20Ω/ 2000W
BL3-B□2011	11	12Ω/ 4000W	12Ω/ 4000W
BL3-B□2015	15	10Ω/ 6000W	10Ω/ 4000W

Table 2.6 Braking Resistor value list

2.9. Product Function

Table 2.7 Basic Function List

No.	Name	Purpose	Description	Note
1	Automatic Run		 Door auto open at stop; Door auto close in delay time; Door close at close button pushed; Car call register, auto cancel wrong call; Landing call stop car in same direction Car service opposite direction landing call at top/bottom floor 	 Turn all inspection switch to normal state; Turn Auto/Attendant switch to Auto state; The other two Auto/Inspection switch at Auto state;
2	Attendant Run		 Door auto open at stop; Door close at close button pushed; Car call auto register/cancel wrong call; Landing call stop car in same direction; 	 Turn all inspection switch to normal state; Turn Auto/Attendant switch to Attendant state; The other two Auto/Inspection switch at Auto state;
3	Inspection Run	Used at System Commissioning; Maintenance	When push up/down button in inspection mode, car runs up/down at inspection speed. Car stop once button released.	Auto/Inspection switch at car top, car and control cabinet, priority from high to low.
4	Auto door open at power on	Auto door open	If car at leveling zone at power on, door open automatically.	
5	Auto door close in delay time	Door keep opening	After door complete opened, it keep open and will auto close after delay time.	 Delay time is set through open door holding time parameter (T) T-2s with only landing call T+2s with both landing call and car call.
6	Door OP at current floor landing call	Door open for landing call	If landing call on the same floor at door closing or door closed but car not running, door will open automatically.	Delay time is set by open door holding time.
7	Safety Plate/ light curtain	Close door safely	If safety plate touched/light curtain covered, door will open and close again.	Door safety plate/light curtain reset, door automatically close again.
8	Overload door keep open	Wait for load reduction	Door open at overload, with overload light on, buzzer sounds, CZ display on COP. Car not running.	Elevator back to normal state when overload is cleared.
9	Full-load drive by pass	Run to nearest registered floor	At full load, car only respond to car call, not to landing call.	Elevator back to normal state when overload is cleared.
10	Attendant control by pass	VIP Run	At attendant run, press pass over button, elevator only responds to car call.	
11	Operation mode display	Adjust/ Maintenance	Elevator Running mode, direction, floor, door mode, load and fault information display on integrated controller LCD.	

No.	Name	Purpose	Description	Note
12	Auto control light	Energy Saving	Car box light turned off if elevator is not used for 15minutes. Turned on after receiving any call.	
13	Fire-Service Mode		 System enters fire-service mode when fire switch is closed: 1.Clears up all landing/car call; 2.Auto return to fire floor 3.Door keep opens 4. Output fire linkage signal after return to fire floor. 5.If elevator runs in opposite direction, stop at nearest floor, do not open door, run directly to fire floor, door keep opens. 	 Two fire-service modes for option: Fire mode 1: Elevator stop running after returning to fire floor. Fire mode 0: a. Landing call disabled; b. Door keep opens at fire floor; c. To run elevator, fireman should first choose the target floor, press and hold the close door button till door close, elevator run; if close door button is released before door closed, door open again. d. Arriving target floor, press and hold open door button till door opens, otherwise door close again. e. Can only set one floor every running.
14	Auto stop at elevator fault	Free passengers	When car stop outside landing zone at elevator fault, it will auto crawl to leveling zone in middle floor direction and open door.	Only if safety circuit and inverter are both working normal.
15	Parking	Stop Running	Elevator enters parking mode at electric lock closed. 1. Elevator does not respond to landing call, service all car call and return to parking floor (adjustable); 2. If no car call, elevator directly return to parking floor; 3. After return to parking floor: a. HOP and COP display parking sign "ZT"; b. Do not respond to car/landing call; c. After 10s, door close, car box light and HOP/COP display turn off. d. Press any COP/Open, close door button, car box light turn on; e. Press Open/Close door button, car door close again and cut car box light after 10s.	 If elevator at inspection mode when close electric lock, car cannot auto return to parking floor. Other functions remain. Integrated controller in working state when elevator at parking mode. Once open electric lock, elevator will run normally.

Table 2.7 Basic Function List (Cont'd)

No.	Name	Purpose	Description	Note
16	Duplex Control	Two elevator optimized control	 At landing call, both elevator answers based on their running state and location, and only one elevator respond to increase the running frequency. When both elevators at waiting state, one return to waiting floor (normally G floor), the other one stays at current location. 	To achieve duplex, connect two integrated controllers with the cable provided and set duplex parameter accordingly.
17	Group Control	Multi-Elevator	Control up to 8 elevators together	

Table 2.7 Basic Function List (Cont'd)

Table 2.8 Special Function List

No.	Name	Purpose	Description	Note
1	Hoistway Learning	Measure, store hoistway data.	In inspection mode, from bottom terminal switch to top terminal switch , measure and store the landing zone and hoistway switch position.	Hoistway learning may be terminated in unusual condition and system will give error code accordingly. Please follow Table 8.2 for detail error codes. ▲ Note: When hoistway learning stops, only when "Success" is displayed on the operator means hoistway learning success.
2	Double press Cancellation	Cancel car call	Press car call button again could cancel such call. (Button answer light off)	Such function is also achievable when elevator is not running.
3	Anti-mischief	Cancel car call at terminal	 When elevator reaches terminal switch, clear all car call. For elevator with weighing device, only last 3 car calls are registered at light load. 	
4	Landing call button stuck diagnose	Repair indication	If one landing call button is pressed for more than 20s, it is considered stuck (cannot reset), such call is not registered, button answer light flashes.	Exit such state when button is reset.
5	Repeat close door		At close door command, if door interlock circuit not connected in set time, door open and close again.	If repeat 5 times and door interlock circuit still not close, elevator stops for service, display error code accordingly.
6	Machine room floor selection	Maintenance	Use hand operator to input car call	
7	Machine room floor open/close door	Maintenance	Use hand operator to input open/close door command	

No.	Name	Purpose	Description	Note
8	Non-Stop Floor		User can set any floor not to stop	
9	Homing floor set	Wait at homing floor	In auto mode, with no landing/car call for certain time, car goes to homing floor.	Can only set one homing floor.
10	Display character set	Change display of certain floor	Display character on any floor can be set through hand operator. (Character or figure)	
11	Attendant Direction Set	VIP Mode	Choose elevator direction through up/down button before running	Only available in Attendant mode.
12	Auto Start/Stop Elevator Service	Automatic start/stop elevator service	User may set elevator on/off time by practical requirement.	 Time is set by 24hrs Cancel this function by setting both on/off time to 00. This function is only available with electric lock open, otherwise elevator in parking mode. To enable elevator service in off time: Close electric lock, wait for 1s, reopen electric lock to enter force on mode, elevator could use normally. Close electric lock after use, wait for 1s, reopen electric lock to exit force on mode, elevator in off time.
13	Special Running	Special Passenger Service	Landing call is invalid, elevator controlled by attendant. Door control mode is attendant mode.	Only available with special buttons.
14	Door open time delay set	Delay the door open time	Press this button before car door fully closed, door open time will be delayed to set time.	 Must have door open delay button Only available in Auto Mode Normally used in bed elevator system
15	Rear door control	Elevator with two door	Control rear door operation on each floor	Follow section 6.8 for rear door mode setting.
16	Trouble Shooting	Automatic find and record fault data.	 When fault happens, system diagnoses fault condition and display error code on LCD. System record the last 30 fault data (fault time/class/floor) in error report menu for further reference. 	For trouble shooting error code please follow Table 8.1 Trouble shooting for Elevator

Table 2.8 Special Function List (Cont'd)

Chapter 2: Introduction and Installation

Table 2.8 Special Function List (Cont'd)

No.	Name	Purpose	Description	Note
17	Interference evaluation	Inspect site interference condition	Evaluate the site shielding condition, including control cabinet/hoistway connection to ground, help to increase resistance to interference.	This function is only available after elevator commissioning and testing.
18	Encoder Evaluation	Inspect encoder output signal	signal, help service team on site maintenance to eliminate elevator shock and leveling issue.	Provide direct evidence on encoder quality and interference condition.
19	Input port evaluation	Inspect input signal interference	System evaluates and display the input signal quality, help service team to increase the hoistway cable resistance to interference and eliminate elevator COP/HOP display fault information and leveling issue.	Provide direct evidence on input signal interference.
20	Emergency Auto Leveling	After power cut, elevator powered by emergency leveling device, level to the closest landing zone.	 After power cut, elevator powered by emergency leveling device and level to the closest landing zone to free the passenger. Such function must satisfy certain conditions: After power cut, elevator powered by emergency leveling device. (integrated controller I/O board terminal X18 enable); Elevator NOT in inspection mode; Elevator NOT at landing zone; Elevator can run normally; Safety/Door inter-lock circuit close; Elevator emergency leveling procedures when not at landing zone: Determine run direction based on load condition (need weighing device); After leveling to the closest floor, door keep open, emergency leveling device cut power after certain time. After power recovery, if system record a history of emergency leveling action, elevator return to bottom floor to re-calibrate hoistway data. When at landing zone, emergency leveling device supply power, elevator door open (integrated controller I/O board terminal X18 must enable). 	Because the power of emergency automatic leveling running is supplied by elevator emergency automatic leveling controller device, drawings of controller system is different from standard drawing. When you need this function, please ask technique department for drawings accordingly. Use SYT-YY series elevator emergency automatic leveling controller of our company, reference to: <use description of 11.6—STJ-YY series elevator emergency automatic leveling controller>.</use

No.	Name	Purpose	Description	Note
21	Elevator for handicapped	Special COP/HOP for handicapped	 start elevator for handicapped function through parameter setting; COP: Car call function & door open/close button. HOP: Recognize for handicapped calling through different floor; Principle: When leveling, opening time will keep longer if handicapped is on this floor (the opening time can be changed); When press cop opening button, opening time will keep longer. 	 ♦ Set HOP address: When use elevator for the handicapped (FU14=ON), HOP set as below: 1~32 for normal floor, 1 for bottom floor, 2 for second floor, with total 32 floors. 33~64 for handicapped floor. 33 for bottom floor, 34 for second floor, up to 64, with total 32 floors. If building has only one HOP button, the other address keep empty. Link Car call button: 1~N floor internal select button link to car box 1~N floor internal select joint as normal internal select. N+1~N+N as handicapped cop 1~N floor internal select. COP Door open 2 \ Door close 2 input as handicapped door control input (Caution: Elevator for the handicapped cannot use together with rear door function.)
22	Door open in advance	When run at low speed, door open beforehand to improve running efficiency.	Elevator reduce speed when approaching target landing zone, if elevator meets the condition below, door open in advance: 1. Elevator run normally, reaching target landing zone; 2. Two leveling sensors enable; 3. Car speed lower than the set protection speed; 4. Controller low speed output enable; 5. Safety board output enable;	In special function select parameter FU20=ON to enable opening in advance; For opening in advance/re-leveling function principle/wiring diagram please see Appendix 2- opening in advance /re-leveling function description.
23	Re-leveling Function	To achieve re-leveling	Elevator stops at one floor, when passengers move in/out, steel rope will have elastic deformation, and car may move out of landing zone. This function enables elevator move in low speed back to leveling zone with door open. Condition of re-leveling: 1. Elevator stops and leave landing zone; 2. Two leveling sensors enable; 3. Elevator speed slower than set value; 4.Controller low speed output enable; 5. Safety electric board output enable;	In special function select parameter FU19=ON to enable re-leveling function; For opening in advance/re-leveling function principle/wiring diagram please see Appendix 2- opening in advance /re-leveling function description.

Table 2.8 Special Function List (Cont'd)

Table 2.9 Main safety protection Function

No.	Name	Elevator Description	
1	Safety Circuit	Safety circuit open, entire system stops immediately.	
2	Door interlock	Elevator can only run with all door interlock closed, otherwise entire system stops immediately.	
3	Operation Contactor	System check operation contactor constantly, if found any abnormality, system stop immediately.	
А	Brake checking protection	The detection switch of brake arm makes a real-time inspection of opening/closing of the brake.	
-		If the brake fails to open as per requirements, the system will prevent the elevator from start.	
5	Terminal speed-change &	If the elevator detects a terminal switch during running, it will be forced to decelerate and	
5	correct floor display	meanwhile automatically correct the floor display.	
6	Position-limit protection	If the elevator detects a limit switch, the entire system stops immediately.	
7	Limit protection	If the elevator runs to trigger a limit switch, he entire system stops immediately	
8	Instantaneous over-current	If detects over 200% rated output current system stops immediately.	
	protection		
9	Fuse blowing protection	When fuse blow, the entire system stops immediately.	
10	Overload protection	If detects over 150%/180% rated current, system will stop after 60s/10S.	
11	Over-voltage protection	Main DC bus voltage higher than 780V, system stop (400V)	
12	Under-voltage protection	Main DC bus voltage lower than 380V, system stop (400V)	
13	Radiator overheated protection	Thermal resistor protection	
14	IPM interior protection	IPM over current、overheated、short circuit、under-voltage protection	
15	Electric motor protection	Electric thermal protection	
16	Impact restrain loop failure protection	Through contactor joint to feedback protection	
17	Over speed protection	Protect when the speed is faster than allowed	
18	Over deviation protection	Protect when speed deviation is larger than allowed.	
19	PG fault protection	Protect when PG braking or phase stagger.	
20	Self-study protection	Protect when self-study of motor parameter unusual.	
21	Phase lack protection	Protect when lack of in/output phase	
22	Door drive signal	Protect when door signal unusual.	
23	Running time protection	Protect when once run time is longer than limited time.	
24	Counter of floor protection	Protect when floor counter is wrong.	
25	Trouble of communication immunity	Protect when communicate interrupt.	
26	Hoistway learning error	Protect when have trouble in hoistway learning	

Table 2.10 Optional Function List

No.	Name	Elevator Description
1	Remote Monitoring	Monitor elevator running status in monitor current through wire/wireless network;
2	Arrival Gong	Clock announce;
3	Voice Synthesizer	Voice announce;
4	Identity Control	ID/IC Car control;
5	Weighing device	Weighing device for elevator;

 \llbracket
Chapter 3 Wiring

This chapter explains the terminals and wiring specifications for main circuit, control circuit and PG card of integrated controller.

3.1. Connection Diagram for Elevator Integrated Controller

Figure 3.1 Connection Diagram for Elevator integrated controller

3.2. Wiring Main circuit Terminals

3.2.1. Main circuit structure

Figure 3.2 Main circuit Structure

3.2.2. Terminal arrangement for Main circuit

Figure 3.3 Terminal arrangement for main circuit

3.2.3. Main circuit terminal summary and function instruction

Terminal Symbol	Function Instruction
R, S, T	Main circuit power input (380V/50Hz, 3ϕ)
DC+	DC BUS output +
DC-	DC BUS output -
B1、B2	External Braking resistor terminal connection
U, V, W	Controller output terminal, connect with motor
DC+,DC-	Connect with battery device when system has ARD function
GE	Terminal connect to ground

Table 3.1 Main circuit terminal definition & function

3.2.4. Wire specification for main circuit wiring

Table 3.2 Wire size and clamping torque for main circuit wiring

Controller Model	Terminal Symbol	Screws	Clamping Torque N∙m	Wire size (min) mm ²	Wire size (Rec) mm ²	Wire type
BI 3-B⊡4005	DC+, DC-, R, S, T, B1, B2, U, V, W	- M4	1 2~1 5	4	4	
	GE	1014	1.2 1.3	2.5~4	2.5	
BI 3-B⊡//007	DC+, DC-, R, S, T, B1, B2, U, V, W	N//	1 2~1 5	4	4	
	GE	1014	1.2 1.5	4	4	
BI2 B⊡//011	DC+, DC-, R, S, T, B1, B2, U, V, W	MG	1~E	6~10	6	
	GE	1010	4 5	6~10	6	(i)
BI 3-B⊡//015	DC+, DC-, R, S, T, B1, B2, U, V, W	MG	1∼5	6~10	6	cable
	GE	1010	4 5	6~10	6	ver
BI3-B⊡//018	DC+, DC-, R, S, T, B1, B2, U, V, W	MG	M6 1~5	8~10	10	lpov
DLJ-D-4018	GE	1010	4 5	8~10	10	viny
	DC+, DC-, R, S, T, B1, B2, U, V, W			$10\sim$ 16	10	600V
BL3-B□4022	GE	IVI6	4~5	$10\sim$ 16	16	e (e.g
	DC+, DC-, R, S, T, B1, B2, U, V, W			10~ 16	16	ır cabl
BL3-B□4030	GE	M6	4~5	10~ 10~	16	powe
				$\frac{16}{25}$		Use
	DC+, DC-, R, S, T, B1, B2, U, V, W	MO	0~10	50	35	
DL3-D∐4037	GE	IVIO	9, ~10	$25\sim$ 50	35	
	DC+, DC-, R, S, T, B1, B2, U, V, W		9~10	35~ 50	35	
BL3-B□4045	GE	M8		35~ 50	35	

3.2.5. Main circuit wiring

3.2.5.1 WIRING MAIN CIRCUIT INPUT

Observe the following precautions when wiring the main circuit.

1. Installing a Molded-case Circuit Breaker (MCCB).

Connect the power input terminals($R \ S \ T$)and power supply via a molded-case circuit breaker(MCCB) suitable for the controller. Choose an MCCB with a capacity of 1.8 to 2 times of the controller's rated current. For MCCB's timing characteristics, be sure to consider the controller's overload protection (60S at 150% of the rated output current, 10S at 180% of the rated output current).

2. Installing a Earthling Fault Interrupter

Controller outputs use high-speed switching, so high-frequency leakage current is generated. Therefore, at the controller input side, use an GND fault interrupter to detect only the leakage current in the frequency range that is hazardous to humans and exclude high-frequency leakage current. For a special-purpose GND fault interrupt, choose an GND fault interrupter with sensitivity amperage of at least 30mA per controller. When using a general GND fault interrupts, choose an GND fault interrupter with sensitivity amperage of 200mA or more per controller and with an operating time of 0.1s or more.

3. Installing a Magnetic Contactor.

Power input terminals($R \ S \ T$) and power can be connected or be shut off through magnetic contactor (KMC). Choose of magnetic contactor is according with the rated current of the controller. Make sure the contact capacity of magnetic contactor is greater than the rated current of the controller.

4. Wiring the terminals

If there is no phase sequence requirements, the input power supply can be connected with any one terminal (R, S, T), the phase sequence of input power supply is irrelevant to the phase sequence.

5. Installing a DC reactor

If necessary, take out the jumper in P1, (+) terminal of the controller, install the DC reactor. Never touch the P1, (+) terminal or the jumper with bare hand directly.

6. Installing Surge Absorber

Make sure using a surge absorber for inductive loads near the controller. These inductive loads include magnetic contactor, electromagnetic relays and magnetic brakes, and so on.

3.2.5.2 Wiring the output side of main circuit

1. Connect the controller and Motor

Please connect the motor(input) wires to the output terminals U_{n} V, W. Check that the motor rotates anticlockwise with the forward run command while running, otherwise, exchange the output terminal V and W.

2. Never connect a power supply to output terminals

Never connect a power supply to output terminals $U_{\infty} V_{\infty} W$. If voltage is applied to the output terminals, the internal circuit of the controller will be damaged.

3. Never short or GND output terminals

Never GND or short the output terminals. Never contact the controller with bare hands.

4. Never use capacity, surge absorber, power factor regulator and noise filter.

Never connect capacity, surge absorber, power factor regulator and noise filter to output circuit. The high-frequency components of the controller output may result in overheating or damage to these parts or may result in damage to the controller

5. Use of magnetic contactor

Don't connect a magnetic contactor between the controller and the motor and turn it ON or OFF during operation. Otherwise, a large inrush current will be created and the over current protection in the controller will operate. Before shut off the contactor, please stop the controller output first, after a while delay, then shut off..

3.2.5.3 WIRING EARTH TERMINALS

- **1.** Make sure to connect the earth protection terminal GE (GND resistance less than 10Ω).
- 2. Please do not share the GND with other devices such as welding machines or power tools.
- 3. Minimize the length and dimension of GND wire.
- 4. Please connect to earth at one point.

3.2.5.4 CONNECT BRAKE RESISTOR

- 1. There is an internal brake unit in the controller, but must equip an external resistor to absorb the feedback energy during brake. The configurations of the brake resistor are shown in **table 2.6**.
- 2. Connect brake resistor to terminal B1 $_{\rm N}$ B2.
- 3. It is recommended to use heatproof wire with suitable specification and minimum length to connect brake resistor.
- **4.** The installation of the brake resistor should consider the ventilated condition. Fan and protection cover are necessary to make sure ventilation and to avoid burn and electric shock.
- **5.** Never contact the Terminals B1 and B2 with bare hands.

3.3. Wiring Control Circuit Terminals

3.3.1. Terminal Arrangement for Control Circuit

Figure 3.4 Terminal Arrangements for Control Circuit

Control circuit includes integrated control board, PG card and digital operator. PG card and digital operator will be introduced separately in **Chapter 4**. As elevator floor varies, the input, output of the controller and CAN communication interface is separate with the other parts of the controller, so the I/O interface of the controller should be connected with DC 24V power supply. Besides, DC 24V can also be used with HOP and COP. So the power supply should be equipped with suitable capacity according with the floor.

3.3.2. Terminal Connection for Control Circuit (Figure 3.1)

3.3.3. Control Circuit Port definition and Function

						Interface Tech Spec			
Port Name	Port Number	Location	Definition	Usage	Туре	Rated Capacity	On/Off time	Max Speed	
	Y0	J1_1	KBC Brake						
	Y1	J1_2	KDY assist contactor						
	CM1	J1_3	Y0-Y1 Public			DC			
	Y2	J1_4	KKM open door 1			10A30V			
J1	Y3	J1_5	KGM close door 1	Output	Relay	AC	5/10mS	20cpm	
	Y4	J1_6	KKM2 open door 2			10A250V			
	Y5	J1_7	KGM2 close door 2						
	CM2	J1_8	Y2-Y5 Public						
	Y6	J2_1	KXFL Fire-linkage						
	Y7	J2_2	Light off						
	Y8	J2_3	KDZZ Arrival Gong			DC			
10	CM3	J2_4	Y6-Y8 Public	.		10A30V	= /4.0	20	
J2	Y9	J2_5	Ea lower 7-seg display a	Output	Relay	AC	5/10mS	20cpm	
	Y10	J2_6	Eb lower 7-seg display b			10A250V			
	Y11	J2_7	Ec lower 7-seg display c						
	Y12	J2_8	Ed lower 7-seg display d						
	Y13	J3_1	Ee lower 7-seg display e						
	Y14	J3_2	Ef lower 7-seg display f						
	Y15	J3_3	Eg lower 7-seg display g						
	Y16	J3_4	EHbc higher 7-seg display bc						
			(for 7-seg display, when higher			DC			
J3			bit is not used, it can be set as	Output	Relay	10A30V	5/10mS	20cpm	
			function code FLICE)	•	,	AC			
	¥17	13 5	FHg higher 7-seg display g			10A250V			
	V18	13 6	ES I In direction display						
	Y19	13 7	FX Down direction display						
	CM4	13_7 13_8	Y9-Y19 Public						
	Y20	J4 1	Power off after parking (No						
		•	output after parking)						
	Y21	J4_2	ECZ Overload output			DC			
	Y22	J4_3	FMQ Buzzer	Output	Relay	10A30V	5/10mS	20cpm	
	CM5	J4_4	Y20-Y22 Public	•	,				
J4	Y23	J4_5	Main contactor cut-off			1042300			
	CM6	J4_6	Y23 Public						
	X35+	J4_7	Door interlock +						
			(110V-220VAC)	Input	Opto-Coupler	AC110V	10mS	100Hz	
	X35-	J4_8	Door Interlock(110V—220VAC)			δMA			

Table 3.3 Control Circuit Port definition and function list

Dont	Dout				I	nterface To	ech Spec	
Name	Port Number	Location	Definition	Usage	Type	Rated	On/Off	Max
					Type	Capacity	time	Speed
	10	J5_1	SKYC Door open delay					
	11	J5_2	Full/Single collective control					
	10	15 0	Car call input 1/1					
	12	12_3	Full/Single collective control					
	12	15 /	Eull/Single collective control					
	15	12_4	Car call input 3/3					
	14	J5 5	Full/Single collective control					
		_	Car call input 4/4		Input:	Input:		
	15	J5_6	Full/Single collective control	Input	Opto-Coupler	DC24V	Input:	Input.
J5			Car call input 5/5	Output	Output: Open	Output	10mS	100Hz
	16	J5_7	Full/Single collective control		Collector	300MA		100112
			Car call input 6/6					
	17	J5_8	Full/Single collective control					
			Car call input 7/7					
	18	J5_9	Full/Down (Up) collective					
			Car call input 8					
	19	15 10	Full/Single collective control					
	15	35_10	Landing Call Up input 2/					
			Car call input 9					
	110	J6_1	Full/Single collective control					
			Landing call Up input 3/					
			Landing call input 1					
	111	J6_2	Full/Single collective control					
			Landing call Up input 4/					
	110	16.2	Eull/Single collective control		Input:	Input:		
10	112	10_2	Landing call Lin input 5/	Input	Opto-Coupler	DC24V 7mΔ	Input:	Input:
			Landing call input 3	Output	Output: Open	Output:	10mS	100Hz
	113	J6 4	Full/Single collective control		Collector	300MA		
		_	Landing call Up input 6/					
			Landing call input 4					
	114	J6_5	Full/Single collective control					
			Landing call Down input 2/					
	11 E	17 1	Landing call input 5					
	112	1/_1	Landing call Down input 3/					
			Landing call input 6					
	I16	J7 2	Full/Single collective control					
		_	Landing call Down input 4/		la se se t	la cont		
			Landing call input 7		Input: Onto-Coupler	Input:		
17	117	J7_3	Full/Single collective control	Input	opto-coupier	7mA	Input:	Input
57			Landing call Down input 5/	Output	Output: Open	Output:	10mS	100Hz
	14.0	17 4	Landing call input 8		Collector	300MA		
	118	J/_4	Full/Single collective control					
			Landing call input 9					
	119	J7 5	Full/Single collective control					
		.,,	Landing call Down input 7/					
			Landing call input 10					

Table 3.3 Control Circuit Port definition and function list (Cont'd)

Table 3.3 Control Circuit Port definition and function list (Cont'd)

Port	Port				Interface Tech Spec			
Name	Number	Location	Definition	Usage	Туре	Rated Capacity	On/Off time	Max Speed
	X0	J7_6	SJX Inspect/Auto					
	X1	J7_7	SSXW Up limit	Input	Onto Countar		10mS	
J7	X2	J7_8	SXXW Down Limit	input	Opto-Coupler	DC24V 7m4		100Hz
	X3	J7_9	SSMQ Up Leveling			71114		
	X4	J7_10	SXMQ Down Leveling					
	X5	J8_1	SKDY Assist Contactor Feedback					
	X6	J8_2	KBC Braking Contactor Feedback					
	X7	J8_3	Door open limit 2					
	X8	J8_4	Door close limit 2					
J8	X9	J8_5	Door safety plate 2	Input	Opto-Coupler	DC24V	10mS	10011-
	X10	J8_6	SJT Emergency stop			7mA		100HZ
	X11	J8_7	SMB Door inter-lock					
	X12	18 ⁸	Undefined					
	X13	J8_9	SXF Fire linkage					
	X14	J8_10	SMS Slow up (Attendant up)					
	X15	J9_1	SMX Slow down (Attendant					
			down)		Opto-Coupler			
	X16	J9_2	SSDZ Up terminal				10m5	
	X17	J9_3	SXDZ Down terminal					100Hz
	X18	J9_4	Undefined					
J9	X19	J9_5	SKM Door open signal 1	Input		DC24V	10mS	
	X20	J9_6	SGM Door close signal 1					
	X21	J9_7	SKMW1 Door open limit 1					
	X22	J9_8	SGMW1 Door close limit 1					
	X23	19_9	STAB1 Door safety plate 1					
	X24	J9_10	SDS Electronic Lock					
	X25	J10_1	SCZ Overload signal					
	X26	J10_2	SMZ Full load signal					
	X27	J10_3	Undefined					
	X28	J10_4	Under load anti-mischief					
110	X29	J10_5	SZH Attendant signal	Input	Opto-Coupler	DC24V	10mS	1004-
110	X30	J10_6	SZS Drive signal			7mA		100HZ
	X31	J10_7	Brake switch					
	X32	J10_8	Heat sensor switch					
	X33	J10_9	SKM2 Door open signal 2					
	X34	J10_10	SGM2 Door close signal 2					
	+24V1	J11-1	Input Public					
	24V_GND	J11-2, J11-3	Power input GND	Dower	Power			
	+24V	J11-4	Power input	rower	rower	DC 24V 10A		
J11	AG0 IN	J11-5	Analog input	Input	Analog	-10V~+10V		
	GND1	J11-6	GND	Ana In GND				
	1H	J11-7	Parallel/Group Control+	Communi-	CAN	80m 4		25.MU
	1L	J11-8	Parallel/Group Control-	cation	CAN	ouma		231/17

3.3.4. Wire size for Control Circuit Terminals

600V plastic insulated wire should be used. Choose suitable wire size based on Table 3.4

Terminal	Acceptable Wire	Recommended wire size (mm ²⁾	Clamping	Special
Function	size (mm ²⁾		Torque N.m	Requirement
Input/ Output	0. 5~1	0.75	0.5~0.6	
PG Car I/O	0.15~0.5	0.3	0.5~0.6	Twisted pair shield
CAN COMM	0.75~1.5	0.75 (\leq 10 floors) 、1.5 (>10 floors)	0.5~0.6	Twisted pair shield

Table 3.4 Wire size for Control circuit terminals

3.3.5. Control Circuit I/O interface and wiring

3.3.5.1 DIGITAL VALUE INPUT INTERFACE

The common terminal of board for digital value input interface is +24V, so it should be contactor input or common emitter input (0V common terminal) as shown in Fig 3.5 and Fig 3.6.

Figure 3.5 Common Emitter Input

Figure 3.6 Contactor Switch Input

3.3.5.2 CAN COMM INTERFACE

Figure 3.7 CAN COMM Interface and Connection

Chapter 3: Wiring

The controller, COP and HOP are connected through CAN bus. The reliability of CAN BUS communication is directly related to cable wiring. It is specifically required that shaft cable and traveling cable should be **twisted-pair shield cable**. The twisted-pair can stop the differential mode interference of the long wire while shield can isolate the electromagnetic interference caused during elevator running. The function and connection of the CAN communication interface is shown in the Fig 3.7.

3.3.5.3 ANALOG INPUT INTERFACE

The voltage range of analog input interface is $-10 \sim +10V_{\gamma}$ for selecting the load information provided by weighing device. As analog signal is easy to get interference, the wire of analog input terminal should be TWISTED-PAIR SHIELD CABLE. Its input and connection is shown in Fig 3.8.

Figure 3.8 Analog Input & Connection

3.3.5.4 AC 100V INPUT INTERFACE

AC 110V input interface is for testing of Emergency stop/Door Drive. Its interface/connection is shown in Fig 3.9

Figure 3.9 AC110V Input Interface & Connections

3.3.5.5 POWER SUPPLY INPUT INTERFACE

Figure 3.10 Power Supply Interface & Connections

3.4. PG Card Installation & Wiring

3.4.1. PG_V31 Interface Card

PG-V31 interface card can be used for both synchronous/asynchronous motors, with the function of pulse encoder speed feedback and frequency output.

The card is compatible for 12V OC output, push-pull output and 5V long wire drive pulse encode output, It can used with both synchronous machine encoder(A/B) and asynchronous machine encoder (A/B/Z/U/V/W). Please see Fig 3.11 below for detail.

Figure 3.11 PG_V31 Card

3.4.2. Installation and Remove PG_V31

When installing PG-V31 card, first cut off the controller power supply, make sure that charge indicator LED on the controller is off. Then remove the controller and the front cover and install the PG-V31 card.

Installation procedures: first match the connector of the PG-V31 card (welding parts) towards the JPGR connector of the main control board. Match the other two installation hole toward the corresponded two nylon tube (pre-installed). Then keep the PG-V31 card horizontal and press the card stable until the connector and the nylon tube are installed closely with no gap in between.

Removing procedures: first cut off the controller power supply, make sure that the charge indicator LED on the controller is off. Then remove the controller and front cover, remove the terminal connection of PG-V31 card. Isolate the removed wire carefully, don't contact with other charged objects. Then remove the D-type connector, hold the embossed part of the nylon tube with needle point pliers, raise the PG card slowly until the embossed part is taken out. Follow the same procedures with the other nylon tube. Finally remove the PG card.

Precautions for installing and removing

- 1. Don't touch the chip with bare hand directly, to avoid the static charge damage the chip.
- 2. Choose suitable tool, such as screwdriver, needle point pliers and else.
- 3. Never damage the components of the card.
- 4. Never damage the components of the main control board.

5. While recovering the connection, please connect as per wire number and the requirements; make sure the connections are correct.

6. Please make sure the jumpers on the new card and the old card are same.

3.4.3. PG_V31 Terminal Definition & Function List

na e	k A	- u			Interface Technical Specification				
Termiı I Nam	Termii I Mar	Locati	Definition	Usage	Interface Type	Rated Capacity	On/Off Time	Max Speed	
	+5V	JG0-1	Power supply	5V Power supply	Power output	+200mA/5V±5%			
	A-	JG0-2	Frequency signal differential output A-	synchronization frequency division	Differential output	±50mA		500KHz	
	A+	JG0-3	Frequency signal differential output A+	synchronization frequency division	Differential output	±50mA		500KHz	
	B-	JG0-4	Frequency signal differential output B-	synchronization frequency division	Differential output	±50mA		500KHz	
JG0	B+	JG0-5	Frequency signal differential output B+	synchronization frequency division	Differential output	±50mA		500KHz	
	OV	JG0-6	Power supply Ground	Power supply Ground	Power supply GND	_			
	IB	JG0-7	OC/ push-pull type B phase input	Input signal B	OC/ push-pull input	-10mA/12V-15V		500KHz	
	IA	JG0-8	OC/ push-pull type A phase input	Input signal A	OC/ push-pull input	-10mA/12V-15V		500KHz	
	+12V	JG0-9	OC/push-pull type power supply	12V power supply	Power output	+150mA/12V±5%			
	GE	JG0-10	Shield Ground	Shield Ground		_			
	+5V	JG1-1	+5V	5V power supply	Power output	+400mA/5V±5%			
	U+	JG1-2	U+	Differential signal U+	Differential input	±20mA/3.1-5V		500KHz	
	Z+	JG1-3	Z+	Differential signal Z+	Differential input	±20mA/3.1-5V		500KHz	
	B+	JG1-4	B+	Differential signal B+	Differential input	±20mA/3.1-5V		500KHz	
	A+	JG1-5	A+	Differential signal A+	Differential input	±20mA/3.1-5V		500KHz	
	GND	JG1-6	GND	5V GND	Power supply GND	_			
	U–	JG1-7	U–	Differential signal U–	Differential input	±20mA/3.1-5V		500KHz	
JG1	Z	JG1-8	Z	Differential signal Z–	Differential input	±20mA/3.1-5V		500KHz	
	В—	JG1-9	B-	Differential signal B–	Differential input	±20mA/3.1-5V		500KHz	
	A	JG1-10	A-	Differential signal A–	Differential input	±20mA/3.1-5V		500KHz	
	GND	JG1-11	GND	5V Ground	Power supply GND	—			
	V+	JG1-12	V+	Differential signal V+	Differential input	±20mA/3.1-5V		500KHz	
	V–	JG1-13	V-	Differential signal V–	Differential input	±20mA/3.1-5V		500KHz	
	W+	JG1-14	W+	Differential signal W+	Differential input	±20mA/3.1-5V		500KHz	
	W–	JG1-15	W–	Differential signal W–	Differential input	±20mA/3.1-5V		500KHz	

Table 3.5 PG—V31 Card Terminal Definition & Function

The parameter above given is for PG-V3w interface card work in the environment temperature of 0° C-70 $^{\circ}$ C, if the temperature is higher than 70 $^{\circ}$ C, PG interface card may not work normally or even damage.

3.4.4. PG_V31 Connection for 12V push-pull/OC output encoder (for Asynchronous Machine)

Connection of PG-V31 card and 12V push-pull/OC output encoder (for asynchronous machine) is shown in Fig 3.12

Jumper JA and JB should be shorted, connect the12V/B/A/0V on the encoder to the PG card terminal +12V/IB/IA/0V (the terminal 7/8/9/10 of JG0) one-by-one.

3.4.5. PG_V31 card connection with 5V long cable drive output encoder (for Asynchronous Machine)

The connection of PG-V31 card and 5V long cable drive output encoder (for asynchronous machine) is shown in Fig 3.13.

Jumper JA and JB should be shorted (Factory setting for JA and JB jumper is off), then connect the 5V/B+/A+/B-/A-/OV of encoder to the +5V/B+/A+/B-/A-/GND of the D-type connection on terminal JG1 (the related pin of 1/4/5/9/10/6 of JG1 for D-type connection part). Make sure the wiring connection is correct, then connect plug and lock well.

图 3.13 PG_V31 connection with 5V long cable drive output encoder (for asynchronous machine)

3.4.6. PG_V31 card connection with 5V long cable drive output encoder (for Synchronous Machine)

The connection of PG-V31 card and 5V long cable drive output encoder (for synchronous machine) is shown in Fig 3.14

Jumper JA and JB should be disconnected(Factory setting for JA and JB wire jumper is off), then connect the 5V/0V/A+/A-/B+/B-/Z+/Z-/U+/U-/V+/W- of encoder to the

+5V/GND/A+/A-/B+/B-/Z+/Z-/U+/U-/V+/V-/W+/W- of the D-type connection on terminal JG1 (the related pin of 1/6/5/10/4/9/3/8/2/7/12/13/14/15 of JG1 for D-type connection part). Make sure the wiring connection is correct, then connect plug and lock well.

Figure 3.14 PG_V31 connection with 5V long cable drive output encoder (for synchronous machine)

3.4.7. Precautions for using PG_V31 card

For the 15 pin differential output encoder interface of the PG-V31 card and the OC/push-pull output encoder interface, the input pulse signal frequency is required to be no more than 500 KHz, the parameter of the input and output signal current and voltage cannot exceed the range given in the table 3.5 above.

If the parameter of the input and output signal current and voltage exceed the given range, the PG interface card and encoder may not work abnormally or even get damaged

Manufacturer suggests that once the external circuit condition is not well, to avoid PG card interference or getting damaged, please do not power up other circuits with the PG-V31 interface card +5V power supply except the encoder.

Never connect the PG-V31 interface card to OC/push-pull output encoder interface and the differential output encoder interface at the same time. Otherwise, the encoder and the PG-V31 card may be damaged.

When using the differential output encoder interface, it is necessary to make one D type plug with 3 line 15 pin corresponding with the "JG1" connector of the PG-V31 interface card. Also, **DO NOT** connect jumper "JA" and "JB". When using OC/push-pull output encoder interface, the signal interface in the "JG0" terminal can be connected directly, and the jumper "JA" and "JB" **MUST BE** connected. The position of "JA" and "JB" doesn't affect the use of the frequency signal differential output function.

Please note that user shall take responsibility for the consequence caused by the reasons above.

3.4.8. SPG_V33 Interface Card

SPG-V33 interface card is shown in the Fig 3.15

Figure 3.15 SPG_V33 Card

3.4.9. SPG_V33 Interface Card Terminal Definition and Function List

Table 3.6 SPG_V33 Terminal Definition & Function (D-input/output refers to Differential input/output)

na	e	ha k	uc			Interface Technical Specification			
Termi I Nam		Termi I Mar	Locati	Definition	Usage	Interface Type	Rated Capacity	On/Off Time	Max Speed
	nal)	+5V	JENDAT -1	Power Supply	5Vpower supply	Power output	+500mA/5V±2.5% Voltage ripple <50mV		
	g sig	B-	JENDAT -2	D-output B-	Sync-frequency division	D-output	5V/±50mA		250KHZ
∟	/idin	B+	JENDAT -3	D-output B+	Sync-frequency division	D-output	5V/±50mA		250KHZ
IDAT	y div	A–	JENDAT -4	D-output A–	Sync-frequency division	D-output	5V/±50mA		250KHZ
JEL	nenc	A+	JENDAT -5	D-output A+	Sync-frequency division	D-output	5V/±50mA		250KHZ
	freq	GND	JENDAT -6	Power Ground	Power Ground	PGND			
	For	GND_E	JENDAT -7	Encoder shield cable GND					
	<u> </u>	GND_E	JENDAT -8	Encoder shield cable GND					
		B-	JG1-1	В-	Differential signal B–	Differential input			40KHz
		*	JG1-2	_	_	—			
		R+	JG1-3	R+	Differential signal R+	D-input			40KHz
		R–	JG1-4	R–	Differential signal R–	D-input			40KHz
		A+	JG1-5	A+	Differential signal A+	D-input			40KHz
		A–	JG1-6	A-	Differential signal A-	D-input			40KHz
		0V	JG1-7	GND	5V Ground	PGND			
JG1	5	B+	JG1-8	В+-	Differential signal B+	D-input			40KHz
		5V	JG1-9	+5V	5Vpower	Power output	+500mA/5V±2.5% Voltage ripple <50mV		
		C–	JG1-10	C-	Differential signal C–	D-input			40KHz
		C+	JG1-11	C+	Differential signal C+	D-input			40KHz
		D+	JG1-12	D+	Differential signal D+	D-input			40KHz
		D-	JG1-13	D-	Differential signal D–	D-input			40KHz
		*	JG1-14	_	_	_			
		*	JG1-15		_	_			

3.4.10. SPG_V33 Interface Card Circuit

Figure 3.16 SPG_V33 Card

The resistor for ground terminal GND_E is not essential component. There might be different requirement between different versions.

3.4.11. Precautions for using SPG_V33

- 1. Sine/cosine PG card can provide power output of 5V±2.5%/500mA for encoder. If the current required exceeds the PG card rated value, it may damage the PG card or encoder.
- 2. The cut-off frequency of the analog input signal is requested to be lower than 40KHz. This is decided by filter circuit. If the input signal bandwidth exceeds this range, PG card cannot guarantee to analyze the signal correctly and the driver may not work properly.
- **3.** If use the frequency output function that PG card provided, make sure that the current in frequency dividing interface is within rated level to avoid any unwanted circuit protection mechanism. Also, the maximum frequency dividing output rate is 250KB/S; beyond such limit of the speed rate may cause frequency dividing signal not output properly.
- 4. PG card can set two different gains for A, B, C, D signal. A and B signal is set through jumper "SGA" and "SGB". Generally, "SGA" and "SGB" are not shorted and the gain is set as smaller value. If the signal cable of the encoder at site is longer than 7 meters, it is suggested to short the "SGA" and "SGB" to set the gain as larger value, which can compensate the signal attenuation caused by the increased line impedance. In order to get signal with larger gain value to minimize the effect of different conductor characteristics, please short "SGA" and "SGB" directly. Also, it is suggested to compare the signal quality without load compensation, if the effect of shorting and un-shorting "SGA" and "SGB" is same, it is better to short "SGA" and "SGB". Also, please note to short or open "SGA" and "SGB" at the same time, otherwise PG card will not work properly; C and D signal is set through the status of jumper "SGC" "SGD", procedures are the same with A,B.
- 5. The two ground terminal of GND_E is connected inside. At site, one terminal is required to connect to the system GND wires, and the GND resistance should be minimized with independent ground connection point. The other terminal is connected to the shielding layer of the signal cable for the sine/cosine encoder. For the shielding layer of the signal cable, it is suggested that two terminals are grounded at both sides or at the end terminal of GND_E side. As the output signal of the sine/cosine encoder is small analog signal which is easier to get interference, it is better to use the recommended signal cable with complete shield layer, lower transfer impedance and wire twin twisted. Inappropriate ground connection or use unsuitable signal transfer cable may result in system not working properly.

- 7. Jumper S_XF is kept for future adjustments, please keep it disconnected.

3.5. Precautions with Wiring

1. Before connection, please pay attention to the precautions mentioned in chapter 1.2, especially the "warning" and "caution" part.

2. Before connection, make sure that the power supply is off.

3. Please ask professional engineers with training and authorization for the wiring.

4. The wire size and clamping torque should follow the regulation of Table 3.2 and Table 3.4

5. To increase wiring convenience and reliability, it is better to use round crimp type terminal (for main circuit) and club-shaped terminal (for control circuit).

6. Wire the control circuit/main circuit/power supply separately.

7. CAN communication cable should use TWISTED-PAIR SHIELD CABLE.

8. Please ground the cable shield wire correctly, and maximize the contact area.

9. Make sure the length of signal cable for PG/encoder is within 30m, minimize the length.

10. Make sure the cable between controller and machine is within 100m, minimize the length.

11. Make sure the brake resistor is connected between B1 and B2.

12. Make sure the connection of ground terminal GE is secure, do not share the ground cable with other devices such as welding machines or power tools. Minimize length and dimension of ground cable and ground at one point.

13. After wiring, make sure check the following:

- a. Correctness and reliability of connection.
- b. Whether there is leftover, such as wire, screw and metal filing
- c. Whether the connection of the screw, the terminals and the connection parts is loose.
- d. Whether the bare conductor of terminals is connected with other terminals.

Chapter 4 Operator

BL3—U series elevator integrated controller is equipped with LCD digital operator OP-V6. It is a special tool for commissioning and maintenance of control system. It provides a nice and easy human-machine interface with both Chinese and English on display.

4.1. Key, display and function of Operator

The digital operator OP-V6 has the main LCD screen with resolution of 128×64 LCD, 5 LED and 11 function buttons. Please see figure 4.1 below for detail.

4.1.1. Operator LED Display

Figure 4.1 Digital Operator Display and button

4.1.2. Operator Keys

Table 4.2	Operator Key	s names and	functions
-----------	---------------------	-------------	-----------

Keys	Name	Function Description		
RUN	[RUN] Key	Run the controller in keypad control mode; button is disabled in program control mode. Enable/disable is set through parameters.		
STOP	[STOP] Key	Stop the controller in keypad control mode; button is disabled in program control mode. Enable/disable is set through parameters.		
MENU	[MENU] Key	Return to main menu on any screen.		
SHIFT	[SHIFT] key	Enable the 2 nd function of other keys.		
RES	[RESET] Key	Enter the digit setting option for certain parameters.		
\land	[UP] Key	Scroll up menu options or edit figures in certain setting page. 2 nd function: Scroll up 10 options.		
	[DOWN] Key	Scroll down menu options or edit figures in certain setting page. 2 nd function: Scroll down 10 options.		
	[LEFT] Key	For parameter setting, choose the left digit for editing.		
	[RIGHT] Key	For parameter setting, choose the right digit for editing.		
ENTER	[ENTER] Key	Enter the next level sub-menu on main screen; Input set value on parameter setting; Give command; Check fault/warning information.		
ESC	[ESC] Key	Return the previous level menu.		

4.1.3. LCD Display

Controller enters the main interface after power on. The main interface is shown in Fig 4.2

The main interface displays the main information of the elevator in present status, including floor number, elevator speed, running direction, door lock status, running model, fault code and else. On the main interface, the above information is live updated.

Figure 4.2 Main interface on digital operator

The instructions for the information shown in the Digital operator LCD display interface are as following:

1. The status of the elevator display1:

INSP	MANU	AUTO
FIRE	STOP	USER

2. Present floor display:

Display the floor number that the elevator is at.

3. Door lock status:

CLOSE/OPEN: Door inter-lock circuit closed/opened.

4. The status of the elevator display 2:

FULL:	full load
OVER:	overload
GROUP:	group control
TWINS:	Duplex control

5. Present error:

ERR: XX display the present Error code.

4.1.4. Function of Operator

The function of digital operator is as follows:

- 1. LCD display with English and Chinese
- 2. Setting log in level and corresponded password.
- 3. Adjusting the settings of quick menu
- 4. Monitor the status of the elevator and the controller.
- 5. Parameter check, setting and save.
- 6. Hoistway learning
- 7. Motor parameter learning
- 8. Weighing data learning
- 9. System clock setting
- 10. Error history log record and check.
- 11. Parameter copy, upload and download.
- 12. Restore to factory setting.

4.1.5. Installation and Connection of Operation

The installation and dismantle of the enclosed digital operator please follow **page 2 to 9 in the chapter 2.7.5** The connection for the digital operator of the opening controller is as follows: remove the front cover of the controller, connect one side of the special communication cable to digital operator, and connect the other side to the J232_T connection on the main board. Make sure the connection is tight; install the front cover of the controller.

1. The installation, dismantle, insert and remove of the digital operator can be carried out when the controller is power-on. That is to say, hot plug is accepted by the digital controller.

2. Please install, dismantle, insert and remove the digital operator carefully to avoid unwanted damage of the digital operator.

3. Please save the removed digital operator and communication cable well, DO NOT press, damage the operator or put it in extreme environment.

4. Please DO NOT use the self-made (> 3m) communication cable.

4.2. Structure flowchart of Operator menu

Figure 4.3 Structure flowchart of Operator menu

4.3. Parameter Setting

Figure 4.4 Parameter setting

In the interface of parameter menu: Press [ENTER] key to enter the interface. (First, it should input the correct user password in the environment setting menu, otherwise, pressing the [ENTER] key will enter the interface of user password setting. So please pay attention to distinguish the factory password and user password. If you want to input the factory password, please press the [ESC] key, returning to previous menu, then press the [DOWN] key to change the prompt to "input the factory password", after that press the [ENTER] key, entering to the interface of the inputting factory password). Press the [UP] or [DOWN] key to check all the parameters. Please press the [ENTER] key to enter the interface of parameter menu. Please press [LEFT] or [RIGHT] key to move the arrow to left or right. Press the [UP] or [DOWN] to increase or decrease the value that the arrow point at. After setting the value, please press the [ENTER] key to save the parameter.

Some parameter values are combination values of the status. Their setting cannot follow the above flowchart directly and should follow the ToolTip in the parameter changing interface. Press [RES] key to enter the bit parameter setting interface to set the status value as per the bit. After enter the bit parameter setting interface, press [UP] or [DOWN] key to check the status of the present bit. When the status of the present bit need to be changed, press [ENTER] key to enter the status change interface. In the status change interface, press [UP] or [DOWN] key to check the status change interface. In the status of the present bit, press [ESC] key to return the Previous Menu

The flowchart of setting of bit parameters is shown in Fig 4.5

Figure 4.5 Setting bit Parameters

4.4. Commissioning Parameters

In commissioning interface: Move the arrow by pressing [UP] key or [DOWN] key to carry out the operation, press [ENTER] to enter the selected interface.

In floor selection interface: Press [UP] key or [DOWN] key to check the car call status in present floor. If need to set car call on current floor, press [ENTER] key in the interface to save the car call information. In the interface, the information follow "F:" is the present floor the elevator car at.

Floor selection flowchart is shown in Fig 4.6

Figure 4.6 Floor selection

In the interface of door control: Press [LEFT] key in the interface to carry out the command "opening front door". Press [RIGHT] key to carry out the command "close front door". Press [UP] key to carry out the command "open rear door". Press [DOWN] key to carry out the command "close rear door", Press [RES] key to cancel all the commands. Door open and close flowchart is shown in Fig 4.7

Modified(D)	IENTERI	Door Ctrl(D1)
Floor Sel(DO)		Open A[<] B[>]
→Door Ctrl(D1)	[ESC]	CloseA[A] B[V]
Motor Ctrl(D2)	◀	[RES] to cancel

Figure 4.7 Door Control interface

In Motor Control interface: Press [UP]/ [DOWN] key to select the running mode is continuous running or JOG. In the mode of continuous running, first press [RUN] key to start motor, press [UP]/ [DOWN] key to increase/decrease the motor given speed. The motor given speed can be negative (negative speed means motor reverse run), press [ENTER] key to save the given speed. Press [STOP] key to stop the motor. In the mode of JOG, press [UP]/ [DOWN] key to increase/decrease the JOG operation frequency, after press the [ENTER] to save the setting, and then press the [RUN] key to start, and press the [STOP] to stop the operation.

The flowchart for operator to control the motor running is shown below in the Fig 4.8.

Figure 4.8 Flowchart for operator to control motor running

In interface of call testing: Press [UP]/ [DOWN] key to check the connections for all floors. Normally, it displays running success, otherwise it shows fails. Press [ESC] key to return to the Previous Menu.

The flowchart for call testing is shown in Fig 4.9

Figure 4.9 Elevator Call testing Interface

The interface of communication testing is shown in the Fig 4.10

Figure 4.10 Communication Testing Interface

The display of the Car Control Communication is as follows:

- OK communication good
- ER Controller receiving data error (please check communication connection & car control board), when there appears a figure, it refers to the times of error on car control board communication.

System communication display

- OK communication good
- ET the controller sending data error (please check landing call communication connection), when there appears a figure, it refers to the times of error on system communication.

Group control communication

- OK Group control system communication good
- ER Group control system communication abnormal (When choose this option)

Duplex control communication

- OK Duplex control system communication good
- ET/ER Duplex control system communication abnormal (When choose this option)

4.5. Save Parameter

In the interface of saving parameter, press the [ENTER] to save all the parameters in the F menu. During saving process, LCD will display "Waiting"; after saving, it will display "Success" or "Failure". The flowchart of saving parameter is shown in the Fig 4.11

Figure 4.11 Saving Parameter

4.6. Hoistway Learning

In hoistway learning interface: when status display "To Down limit", the hoistway learning cannot start directly. The elevator should manual run to the down limit position first, and "To Down limit" status disappear, the screen will display "[ENTER] to start", press the [ENTER] key to start hoistway learning. During the learning process, the interface will display the current learning floor and display the status of "Waiting", when the hoistway learning is completed, the status will display "Success", when there are errors during the hoistway learning, the status will display "ERR" and display error code. Press [ESC] key to return the Previous Menu.

The flowchart of the hoistway learning is shown in the Fig 4.12.

Figure 4.12 Hoistway Learning

4.7. Motor Auto-tuning

Motor Auto-tuning includes two parts: Motor angle tuning and motor parameter tuning. In the interface of Motor Tune: Press [UP] or [DOWN] key to move the arrow to select related tuning information; Press [ENTER] key to enter the pointed tuning interface.

In the interface of Motor Angle Tuning and Motor Parameter Tuning, press [ENTER] to start turning. During tuning, the operator display "waiting"; after tuning, it will display "success". During tuning, if there is error, the tuning process will be terminated, and LCD will display "Tune End", and the status is "error", with error code followed.

Make sure motor has no load, first carry out motor parameter tuning, then carry out the motor angle tuning. Press [ESC] key to return to the previous menu. The flowchart of the motor learning is shown in Fig 4.13

Figure 4.13 Motor Auto-Tuning process

4.8. Motor Load Tuning

Motor Load Tuning also includes two parts: Light loaded tuning and Full-loaded tuning.

In the interface of load tuning: Press [UP] or [DOWN] move the arrow to select related tuning information; press [ENTER] key to enter the pointed tuning interface.

In light-loaded tuning or full-loaded tuning interface: Press [ENTER] to start tuning process, the operator display the present status. Press [ESC] key to return to the Previous Menu.

The flowing chart of weighing learning is shown in 4.14.

Figure 4.14 Motor Load Tuning Process

4.9. Time Setting

In the interface of time setting, the last two digit of "Year", "month", "day", "hour", "Minute" and "second" are editable, press [LEFT] or [RIGHT] to move the arrow to the right place. Press [UP] or [DOWN] key to change the pointed value. After setting: Press the [ENTER] key to save. Press [ESC] key to return the Previous Menu.

The flowchart of time setting is shown in the Fig 4.15

Figure 4.15 Time Setting

4.10. Fault Record Check

In the interface of Fault Record: Press [UP] or [DOWN] key to check the elevator and controller fault record. Press [ENTER] to enter the selected fault record, press [UP] or [DOWN] key to check the latest 30 fault history record.

Each elevator fault record includes error code, time, elevator status at fault (Floor number, running direction, running speed, I/O state), and related information. This helps to find the root cause of the elevator fault and guide the elevator maintenance.

Each controller fault record includes error code, time, elevator status at fault and other important data (Running speed, line/BUS voltage and current). This helps to find the root cause of the controller fault and guide the elevator maintenance.

The flowchart of the fault record check is shown in the Fig 4.16

Figure 4.16 Fault Record Check

Press [ESC] key to return to the Previous Menu.

4.11. Environment Initialization

In environment initialization interface, the display language, the parameter visit grade, input password and the shortcut menu of the operator can be set.

The flowchart for environment initialization is shown in the Fig 4.17.

Figure 4.17 Environment Initialization

Language Selection

The flowchart for the language selection is shown in the Fig 4.18.

Press [UP] or [DOWN] to select language, and press [ENTER] key to save the selection.

User password input and setting

In the interface of password, press the [LEFT] or [RIGHT] key to move the arrow to the pointed position, press [UP] or [DOWN] key to increase or decrease the pointed value, press the [ENTER] key to input the password. When password input is incorrect, "invalid password" will be displayed, and the password cannot be changed at this time. When the password input is correct, "Password OK" will be displayed, next press [ENTER] first then press [RES] key to enter the password setting interface and reset the password. Resetting password is similar to input password. Finally press the [ENTER] key to save the new password.

The flowchart of the password input and change is shown in the Fig 4.19.

Figure 4.19 User Level Password Input/Change

Factory level password Input and Setting

The flow chart of the factory level password input and setting refers to the user level password input and setting.

Quick Menu Setting

Setting quick menu is to simplify the parameter setting and commissioning of the elevator through copying the necessary and basic elevator parameter and normal commissioning parameters to the shortcut menu. With this mechanism, only setting and modifying the parameter for the quick menu can finish the elevator running and commissioning. This avoids carrying out the parameter setting and modifying through several menus and simplifies the course of the parameter setting and commissioning.

All controllers are pre-set with default quick menu. Normally user does not need to modify this.

Set the view interface in quick menu, press [UP]/[DOWN] key to view the setting shortcut menu number, press [ENTER] key to enter editing page, press [LEFT]/[RIGHT] / [UP]/[DOWN] key to move the arrow and modify the value of every single option in the quick menu. After modifying: Press [ENTER] key to save the setting. And the system will jump to the next Set Quick Menu interface.

The flowchart for setting of the quick menu is shown in Fig 4.20

Figure 4.20 Quick Menu Setting

Press [ESC] key to return to the previous menu.

4.12. Parameter Copy

The function parameter copy is to simplify the parameter setting and commissioning process, especially for multiple elevators with same configurations. After finishing the parameter setting and commissioning of one elevator, this function can copy all the parameters (Saved in the digital operator memory), take the digital operator and connect to other elevators, copy all the parameters to the controller, check parameters, and the elevator can run normally.

In the interface of parameter copy: Press [UP] or [DOWN] key to move the arrow to carry on the necessary operation, press the [ENTER] key to start operation.

The flowchart of parameter copy is shown in Fig 4.21.

Figure 4.21 Parameter Copy

After copy operation, LCD display is shown below in Fig 4.22.

Figure 4.22 Parameter Copy Finish

Press [ESC] key to return to the previous menu.

4.13. Restore to Factory Setting

If necessary, the controller can be restored to the factory (default) setting. Press the [ENTER] key to restore the factory setting, the interface will display the status and the result.

The flow chart of restore the factory setting is shown in the Fig 4.23.

Figure 4.23 Restore to Factory Setting

Press [ESC] key to return the previous menu.

4.14. Blue-Light Traction machine Parameter Input

When using Blue-Light Integrated Controller, if the traction machine is also made by Blue-Light, you only need to input the machine model number and encoder information on the machine name plate to finish the parameter setting of the machine.

The interface of the Blue-Light machine input is showing in figure 4.24(a). The input content has three parts, separated by ".". The first part is the model number (separated in 4 digits), the middle part is encoder resolution information, the last part is the PG model. The detail information is showing in figure 4.24(b)

Figure 4.24 Blue-Light Machine Input

Use [UP] or [DOWN] key to set the content of the pointed area, then press the [ENTER] key to confirm. The cursor is then moved to next bit. If the pointed area is not set, the cursor will not move even you press the [ENTER] key (Except the 4th number of the machine model, e.g. S1.0D- as the last number is empty, you can press the [ENTER] key directly to set the next bit).

The flow chart of the Blue-Light machine input is shown below in figure 4.25 (S0.75D as an example)

Figure 4.25 Blue-Light Machine Input Flow Chart

Chapter 5 Parameters

5.1. Parameters Function Classifications

Table 5.1 Parameter Functions List

Function Symbol	U	F	А	D
Function Name	Monitoring Parameters	Setup Parameters	Environment Initialization	Commissioning Parameters

5.2. Parameters Hierarchical Structure

Figure 5.1 Controller Parameters Hierarchical Structure

5.3. Monitoring Parameters

5.3.1. Hoistway Location (U0)

Hoistway location parameters refer to the hoistway switches position (top/bottom terminal/limit switches) and calibration data on each floor recorded in the controller after hoistway learning process, and the unit is m (meter). If need to calculate the distance between two floors, simply minus the calibration data on these two floors.

After hoistway learning, please check the floor calibration, if the calibration value is higher than expected, it is possible that elevator's rated speed setup is higher than the actual value or elevator encoder pulse setup is smaller than the actual pulse. If the calibration value is too low, it is possible that elevator rated speed setup is lower than the actual value or its encoder pulse setup is larger than the actual pulse.

Hoistway location parameter's number, description and content are shown below in table 5.2

Para No.	Display	Content	Range	Unit	Ref Page
U0-00	Lower Limit	The location of bottom limit in hoistway. Data will be recorded after		m	
		finishing hoistway learning			
U0-01	Upper Limit	The location of top limit in hoistway. Data will be recorded after finishing hoistway learning。		m	
U0-02	Lower Slowdown 1	Location of bottom terminal switch 1 in hoistway. Data will be recorded after finishing hoistway learning	-	m	
U0-03	Lower Slowdown 2	DO NOT HAVE BOTTOM TERMINAL 2		m	
U0-04	Upper Slowdown 1	Location of top terminal switch 1 in hoistway. Data will be recorded after finishing hoistway learning		m	
U0-05	Upper Slowdown 2	DO NOT HAVE TOP TERMINAL 2		m	
U0-06 U0-69	Floor Data 164	The location of floor 1-64 switches in hoistway. Data will be recorded after finishing hoistway learning		m	

Table 5.2 U0 Monitoring Parameter List

5.3.2. Monitoring Parameter for I/O Status, Cabin Signal & Interference Appraisal (U1-U5)

Table 5.3 U1 \sim U5 Monitoring Parameter List

Para No.	Display	Content	Range	Unit	Ref Page
U1-00	Input Data	Controller input data show in decimal type. It will be turned into binary type to show the logical status of the input port.			3-6
U1-01	Input Bin	Input port data show in binary type .Each data correspond to logical status of one input port.			3-6
U1-02	Input App	Each line correspond to one input port, "On/Off" states the current port status, the following "n" value states the signal appraisal to input level. Value from "10" to "0" refers to interference condition from good (less interference) to bad (large interference)			3-6
U2-00	Output Data	Display the output port Y0-Y15 current status. The valid output port has the corresponded indication. Port without output (invalid) will be hidden.			3-7
U3-00	Car Input Data	Display car input signal status. The valid input port has the corresponded indication. Port without input (invalid) will be hidden.			5-5
U4-00	Run Times	Show the elevator accumulated running times. Adopts 10 digital decimal figures as indication		Times	
U4-01	Run Hours	Show the elevator accumulated running hour. Adopts 10 digital decimal figures as indication.		Hour	
U4-04	SendApp1	Signal send appraisal for Duplex and group control. Large number means communication send more mistakes.			
U4-05	ReceiveApp2	Signal receive appraisal for Duplex and group control. Large number means communication receive more mistakes.			
U4-06	Interfer Apprais	Appraise the value of interference strength at site. The big value refers to strong interference,"0" states no interference and good GND condition.			
U4-07	Encoder Apprais	The interference degree of encoder signal. When elevator runs steady, large value states the encoder signal weak with heavy interference.			
U4-09	Lock Timer	The current elevator stop timer			
U5-00	CtrlSoftWare NO	Show the elevator control software information. Provide the current software version for factory maintenance and software upgrading.			
U5-01	DriveCodeVer	Show the drive control software information. Provide the current software version for factory maintenance and software upgrading.			
U5-02	CpldEdition	Show base drive control software information. Provide the current software version for factory maintenance and software upgrading.			

For the meaning of input status U1-01 AND output status U2-00, please refer to the control terminal definition **Table 3.3**. Cabin signal symbol definition and content is shown in **Table 5.4**.

Actual Input	Signal Display	Content		
X32	C00	Heat sensor Input		
X33	C01	Door open Input 2		
X34	C02	Door close input 2		
X35	C03	Door interlock coil Input		
10	C04	Door open delay Input		
l1	C05	Full/Single Collective: Car call 1/1		
12	C06	Full/Single Collective: Car call 2/2		
13	C07	Full/Single Collective: Car call 3/3		
14	C08	Full/Single Collective: Car call 4/4		
15	C09	Full/Single Collective: Car call 5/5		
16	C10	Full/Single Collective: Car call 6/6		
17	C11	Full/Single Collective: Car call 7/7		
18	C12	Full/Single Collective: Landing call up 1/ Car call 8		
19	C13	Full/Single Collective: Landing call up 2/ Car call 9		
110	C14	Full/Single Collective: Landing call up 3/ Landing call 1		
l11	C15	Full/Single Collective:: Landing call up 4/ Landing call 2		
l12	C16	Full/Single Collective: Landing call up 5/ Landing call 3		
l13	C17	Full/Single Collective: Landing call up 6/ Landing call 4		
114	C18	Full/Single Collective: Landing call down 2/ Landing call 5		
l15	C19	Full/Single Collective: Landing call down 3/ Landing call 6		
l16	C20	Full/Single Collective: Landing call down 4/ Landing call 7		
l17	C21	Full/Single Collective: Landing call down 5/ Landing call 8		
l18	C22	Full/Single Collective: Landing call down 6/ Landing call 9		
l19	C23	Full/Single Collective: Landing call down 7/ Landing call 10		

Table 5.4 U3-00 Signal & Actual Input Comparison

5.3.3. Drive Monitoring Parameters

Table 5.5 U6 Drive Monitoring Parameters List

Para No.	Display	Content	Range	Unit	Ref Page
U6-00	Power	Rated power class		kW	
U6-01	Ref Speed	Reference Speed		RPM	
U6-02	Feedback Speed	Feedback Speed		RPM	
U6-03	Load	The current load in % of full load		%	
U6-04	DC Voltage	DC BUS voltage		V	
U6-05	Output Current	Output Current		А	
U6-06	Temperature	Drive internal temperature		°C	
U6-07	Output Torque	Output Torque		N·M	

5.4. Parameters setup Function Instruction

5.4.1. Building Setup Parameters (F0)
Table	5.6 Building Setup P	arameters List					
Para No.	Display	Content	Range	Factory Setting	Unit	Live Change	Ref Page
F0-00	Total Floor	Total floor number (same as door zone plate number)	2~64	6		N	
F0-01	Homing Floor	Without landing/car call elevator will return this floor.	1~ Total floor	1		Ν	6-8
F0-02	Fire Floor	At fire-linkage circuit close, elevator enter fire mode and return to this floor automatically.	1~ Total floor	1		N	6-9
F0-03	Parking Floor	When close electric lock in the process of running, elevator return to this floor and stop.	1~ Total floor	1		N	6-8
F0-04	VIP Floor	Set floor display coding. 0: 7-segment; 1: BCD code; 2: Grey code; 3: point to point; 4: Decimal.	0~ 63	0		N	
F0-05 F0-68	Set Indication 1~64	Set indication 1-64, customized character/figure display available		1 64		N	6-13

"N" states the parameter cannot be changed in the process of running."Y" states the parameter can be changed in the process of running. It has same meaning in the following table.

5.4.2. Parameters for Running Setup (F1)

Table 5.7 Running Setup Parameters List

Para No.	Display	Content	Range	Factory Setting	Unit	Live Chang	Ref Page
F1-00	Car Speed	Elevator speed at motor rated speed. Calculate through motor rated rev, traction ratio, deceleration ratio and traction sheave diameter.	0~4.0	1.6	m/s	Z	6-1
F1-01	Motor Speed	Motor speed at elevator rated speed (Calculated)	1~9999	1450	RPM	Ν	6-1
F1-03	Insp Speed	Car running speed at inspection cannot exceed 0.6m/s based on relevant standards and regulations	0~0.6	0.3	m/s	Y	6-1
F1-04	Start Speed	For large resistance at motor start, the starting speed can have smooth increase. The start smooth speed is invalid if set to "0".	0~0.2	0.00	m/s	Y	
F1-05	Leveling Speed	When elevator park outside door zone due to fault, if satisfy running condition, the elevator can level to door zone with this speed.	0.01 ~ 0.6	0.3	m/s	γ	6-1
F1-06	Least Speed	Steady speed on the lowest speed curve.	0~1.0	0.5	m/s	Ν	6-2
F1-07	Open Door Speed	NO SUCH FUNCTION	0~0.3	0.15	m/s	N	Appen dix 2 -III
F1-08	Relevelst Speed	NO SUCH FUNCTION	0~0.3	0.3	m/s	Ν	Appen dix 2 -III

When elevator rated speed/ Single floor running speed is lower than 0.5m/sec, please properly decrease the acceleration B1, deceleration B2; otherwise it will affect the system calculation of current speed. When user modifies the two speed value out of limit, system will reset to the data before modification.

Para No.	Display	Content	Range	Factory Setting	Unit	Live Chang	Ref Page
F1-09	Relevelrun Speed	NO SUCH FUNCTION	0~0.10	0.05	m/s	Ν	Appendix 2 -III
F1-10	Acceleration B1	B1 refers to the acceleration speed curve changing rate, smaller value means elevator start with smooth and gentle increase of speed.	0.1~1.0	0.7	m/s²	Ν	6-2
F1-11	Deceleration B2	B2 refers to the deceleration speed curve changing rate, smaller value means elevator brake with smooth and gentle decrease of speed.	0.1~1.0	0.7	m/s²	Ν	6-2
F1-12	S Curve P1	P1: Acceleration speed increase rate at beginning of elevator start; smaller value means beginning of elevator start with slow and steady movement.	0.1~1.0	0.6	m/s³	Ν	6-2
F1-13	S Curve P2	P2: Acceleration speed decrease rate at end of elevator start; smaller value means end of elevator start with slow and steady movement.	0.1~1.0	0.6	m/s³	Ν	6-2
F1-14	S Curve P3	P3: Deceleration speed increase rate at beginning of elevator brake; smaller value means beginning of elevator brake with slow and steady movement.	0.1~1.0	0.6	m/s³	Ν	6-2
F1-15	S Curve P4	P4: Deceleration speed decrease rate at end of elevator brake; smaller value means end of elevator brake with slow and steady movement.	0.1~1.0	0.6	m/s³	Ν	6-2
F1-16	Zero Speed	Motor speed less than set value, system considers elevator speed as zero and output brake signal.	0~10	1	RPM	Y	6-4
F1-17	Leveling Adj	Adjust differences of up/down leveling	0~100	50	mm	Ν	6-13
F1-18	Load Adj	Normally used in synchronous machine system, compensate elevator load based on steel rope weight difference on each floor.	0~20	0		Y	6-12

Table 5.8 Running Setup Parameters List (Cont'd)

Acceleration B1, deceleration B2, S curve P1, P2, P3, P4 work together to determine the final speed curve and its trend. These parameters have internal relation with each other and are not allow to change at will. When the modified value is out of limit, the value will recover to the previous data.

Table 5.9 Running Setup Parameters List (Cont'd)

Para No.	Display	Content	Range	Factory Setting	Unit	Live Chang	Ref Page
F1-21	Drive Mode	Selection of driving mode ,when setting "1", attendant/VIP mode close door manually; when setting "3", elevator automatically do test run ,other value is invalid.	0~9	0		Ν	
F1-22	Two Door Mode	Setup rear door mode, based on customer requirements, set from mode"0" to"5".	0~5	0		Ν	6-9 6-10
F1-23	Fire Mode	Three Fire modes: 1.Mode"0": Elevator run fire-mode after returning to fire floor; 2.Mode "1": Elevator stop running after returning to fire floor; 3. Mode "2": After elevator return to fire floor, depend on fire switch to run/stop in fire mode.	0~2	0		Ν	6-9
F1-24	Parallel No.	Set "YES" in duplex enable. Set elevator number 0-1 in duplex; 0-7 in group control.	0~7	0		Ν	6-12
F1-25	Twins Control	Elevator duplex control: 1: On 0:OFF	0/1	0		Y	6-12
F1-26	Group Control	Elevator group control: 1:ON 0:OFF	0/1	0		Y	6-12
F1-27	Far Monitor	Remote Monitoring System: 1: On 0: Off	0/1	0		Y	
F1-28	Auto Parking	Auto parking: 1:ON 0:OFF	0/1	0		Y	6-8
F1-29	Load Enable	Load Weighing: 1:ON 0: OFF	0/1	0		Y	6-12
F1-30	Open Delay Able	Door open/close delay: 1:ON 0:OFF	0/1	0		Y	6-8
F1-31	Brake Feedback	Test brake feedback signal: 1: open 2: close	0/1	0		Y	6-4
F1-32	Rerun Password	NOT VALID	0~9999	0		Ν	

5.4.3. Time Setup Parameters (F2)

Table 5.10 Time Setup Parameters List

Para No.	Display	Content	Range	Factory Setting	Unit	Live Chang	Ref Page
F2-00	Brake ON Time	Brake open first then run elevator speed curve. This is to improve the elevator start comfort and match control system with different machine brake on time.	0.00~9.99	0.50	S	Y	6-4
F2-01	Brake OFF Time	Brake close first then disable elevator run. This is to improve elevator stop comfort and avoid slip at elevator stop.	0.00~9.99	0.50	S	Y	6-4

Table 5.10 Time Setup Parameters List (Cont'd)

Para No.	Display	Content	Range	Factory Setting	Unit	Live Chang	Ref Page
F2-00	Brake ON Time	Brake open first then run elevator speed curve. This is to improve the elevator start comfort and match control system with different machine brake on time.	0.00~9.99	0.50	S	Y	6-4
F2-01	Brake OFF Time	Brake close first then disable elevator run. This is to improve elevator stop comfort and avoid slip at elevator stop.	0.00~9.99	0.50	S	Y	6-4
F2-02	Insp Brake Time	The time delay in inspection mode before brake close.	0.00~9.99	0.05	S	Y	6-4
F2-04	Zero Time	The time delay when system detects elevator stop. Adjust this parameter to close brake after elevator reach 0 speed completely, increase elevator stop comfort.	0~9.99	0.30	S	Y	6-4
F2-05	Open Door Time	In Auto mode, elevator automatically open door when stopping at one floor, door will automatically close after set time.	0~999	3	S	Y	6-7
F2-06	Open Delay Time	Enable door open delay function, press open delay button, door open time will be delayed.	0~999	30	S	Y	6-7
F2-07	Homing Time	The waiting time before elevator return to homing floor without landing/car call, Set value to "0" to disable this function.	0~999	60	S	Y	6-8
F2-08	Door Run Time	 The door open/close command run time; Door open/close relay run time for door drive without open/close limit switch. For door drive with open/close limit switch, this run time should be 1s longer than the door actual open/close time. 	0~999	5	S	Y	6-7
F2-09	Beep Delay Time	After elevator change speed to target floor, landing signal is delayed by set time, arrival gong /voice synthesizers are also delayed by set time.	0.00~9.99	0.15	S	Y	
F2-10	Enable Delay	Drive enable signal given/drop is delayed by set time after drive direction signal is given/drop. During this time, drive output current is decreased to reduce current noise.	0.00~9.99	0	S	Y	6-4
F2-11	Lamp Off Time	In Auto mode, if have no car/landing call during set time, system will cut car light power from COP.	0~999	15	min	Y	

Table	• 5.10 Time set	up Parameters List (Cont'd)	Table 5.10 Time setup Parameters List (Cont'd)									
Para No.	Display	Content	Range	Factory Setting	Unit	Live Chang	Ref Page					
F2-12	Over Time	To prevent wire rope slipping or elevator car stuck, time from elevator running to stop is limited to set value. If elevator is running longer than set value, system stops immediately and enter protection mode. Need to re-start the system in order to exit from such mode.	0~999	45	S	Y						
F2-13	SmoothStar t Time	The time to keep elevator start smooth.	0.00~9.99	0	S	Y	6-4					
F2-14 F2-15	Start Time	System will automatically start the elevator (Electric lock: ON) at set time.	00:00 23:59	00:00	hour: min	Y	6-8					
F2-16 F2-17	Stop Time	System will automatically stop the elevator (Electric lock: OFF) at set time. This function is disabled if same start/stop time.	00:00 23:59	00:00	hour: min	Y	6-8					
F2-18 F2-19	Start Time1	System will run bypass the set floor start from this time.	00:00 23:59	00:00	hour: min	Y						
F2-20 F2-21	Stop Time1	System will run bypass the set floor start until this time.	00:00 23:59	00:00	hour: min	Y						

The elevator automatic switch: F2-14, F2-15 F2-16, F2-17 were set separately as per hours and minutes. Please follow the operator indication for this setting.

5.4.4. Input type setup Parameters (F3)

Table 5.11 Input Type Setup Parameters List

Para No.	Display	Content	Range	Factory Setting	Live Chang	Ref Page
F3-00	Input Type	Setting the input type on main control panel. Each bit corresponds to one terminal. Set default level of main board input port. ON: Close enable, OFF : Open enable.	0~ 42949672 95	3974102 631	N	6-10 6-11
F3-01	Car Input Type	Setting the input type of cabin. Each bit corresponds to one terminal. ON : Close enable, OFF : Open enable. Point correspond to X32-X35, IO-I19.	0~ 42949672 95	4294573 839	N	6-10 6-11
F3-02	Input select 1	X12 Input Function Selection	0~32	12	N	
F3-03	Input select 2	X18 Input Function Selection	0~32	18	N	
F3-04	Input select 3	X27 Input Function Selection	0~32	27	N	
F3-05	Input select 4	NO SUCH FUNCTION	0~32	24	N	
F3-06	Input select 5	NO SUCH FUNCTION	0~32	25	N	
F3-07	output select 1	NO SUCH FUNCTION	0~32	0	N	
F3-08	output select 2	NO SUCH FUNCTION	0~32	11	N	
F3-09	output select 3	NO SUCH FUNCTION	0~32	12	N	

When using X22 and X23 as multifunctional input port, please make sure the re-leveling device is NOT used.

5.4.5. Service Setup Parameters (F4)

Table 5.12 Service Setup Parameters List

Para No.	Display	Content	Range	Factory Setting	Live Chang	Ref Page
F4-00	Set Stop Floor1	Set elevator stop/bypass at floor corresponds to each bit. (1-32 floors)	$0\sim$ 429496729 5	4294967 295	Y	6-12
F4-01	Set Stop Floor2	Set elevator stop/bypass at floor corresponds to each bit. (33-64floors)	$0\sim$ 429496729 5	4294967 295	Y	6-12
F4-02	TIM Stop Floor1	Set elevator stop/bypass at floor corresponds to each bit at the set time. (1-32 floors)	$0\sim$ 429496729 5	0	Y	6-12
F4-03	TIM Stop Floor2	Set elevator stop/bypass at floor corresponds to each bit at the set time. (33-64 floor)	$0\sim$ 429496729 5	0	Y	6-12
F4-04	Door Select A1	Set elevator front door enable /disable at floor corresponds to each bit (ON/OFF: Front door enable /disable at this floor)	$0\sim$ 429496729 5	4294967 295(1~ 32level)	Y	6-10
F4-05	Door Select B1	Set elevator rear door enable /disable at floor corresponds to each bit (ON/OFF: Rear door enable /disable at this floor)	0 \sim 429496729 5	4294967 295(1~ 32level)	Y	6-10
F4-06	Function Select	Set elevator functions enable /disable at floor corresponds to each bit. (ON: Enable, OFF: Disable)	$0\sim$ 429496729 5	4	Y	6-13
F4-07	Function Select 2	Set elevator functions enable /disable at floor corresponds to each bit. (ON: Enable, OFF: Disable)	$0\sim$ 429496729 5	0	Y	6-13

5.4.6. Motor Setup Parameters (F5-F6)

Table 5.13 Motor Setup Parameters List

Para No.	Display	Content	Range	Factory Setting	Unit	Live Chang	Ref Page
F5-00	Motor Type	Set motor type (0:sync- outer rotor, 1:async machine, 2:sync-inner rotor)	0~2	0		Ν	6-14
F5-01	Poles	Moto poles (Nameplate)	1~99	20		Ν	6-14
F5-02	Sync Freq	Motor synchronous frequency (Nameplate)	0.001~99.9 99	16	Hz	Ν	6-14
F5-03	Rated Power	Motor rated power (Nameplate)	1~50	6.7	kW	Ν	6-14
F5-04	Rated Speed	Motor rated speed (Nameplate)	1~1999	96	RPM	Ν	6-14
F5-05	V IN	Motor counter-EMF (Nameplate)	1~380	280	V	Ν	6-14

F5-06	L_phase	Motor phase inductance set. (Auto-tuning/ manual input)	Auto-tuning /Nameplate		mH	N	6-14
F5-07	R_phase	Motor phase resistance set. (Auto-tuning/ manual input)	Auto-tuning /Nameplate		Ω	N	6-14
F5-08	Rated FLA	Motor rated current. (Nameplate)	0~99.999		А	N	6-14
F5-09	NO-Load Current	For asynchronous machine, no-load excitation current.	0.1~50	0	А	Ν	6-14
F5-10	Rated Slip	For asynchronous machine rated slip. (Nameplate)	0.1~10	1.3	HZ	Ν	6-14
F6-00	Carrier Freq	Set controller carrier frequency.	6~15	8	kHz	N	
F6-02	SpeedZoom	Speed Zoom (Reduce elevator actual running speed)	0~100	100	%	Y	6-14
F6-03	DirSel	Select motor running direction (0/1: Motor rotates anti- clockwise, car move down/up).	0/1	0			6-14
F6-04	Кр	Speed loop proportional gain. (Valid for complete curve if not used in multiple PI.)	0~65535	700			6-15
F6-05	KI	Speed loop integral gain. (Valid for the complete curve if not used in multiple PI.)	0~65535	260			6-15

5.4.7. Multiple PI Setup Parameters (F7)

Table 5.14 Multiple PI Setup Parameters List

Para No.	Display	Content	Range	Factory Setting	Unit	Live Chang	Ref Page
F7-00	PIMulEnable	Multiple PI parameters 1: Enable; 0: Disable	0/1	0		Ν	6-15 6-16
F7-01	PI1 Range	PI available range 1 (Start -middle speed running PI switch frequency)	0 \sim Rated freq	0	Hz	Y	6-15 6-16
F7-02	PI2 Range	PI available range 2 (middle -high speed running PI switch frequency)	0 \sim Rated freq	0	Hz	Y	6-15 6-16
F7-04	PI3 Range	PI available range 4	0 \sim Rated freq	0	Hz	Y	6-15 6-16
F7-05	Кр1	PI available range 1 proportional gain	0~2000	700		Y	6-15 6-16
F7-06	Kx1	PI available range 1 integral gain	0~2000	260		Y	6-15 6-16
F7-07	Kp2	PI available range 2 proportional gain	0~2000	0		Y	6-15 6-16
F7-08	Kx2	PI available range 2 integral gain	0~2000	0		Y	6-15 6-16
F7-11	КрЗ	PI available range 4 proportional gain	0~2000	700		Y	6-15 6-16
F7-12	КхЗ	PI available range 4 integral gain	0~2000	260		Y	6-15 6-16

5.4.8. Encoder Setup Parameters (F8)

Table	5.15	Encoder	Setup	Parameters	List
i uoic	5.15	Lincouci	occup	i arameters	

Para No.	Display	Content	Range	Factory Setting	Unit	Live Chang	Ref Page
F8-00	Encoder PPR	The encoder pulse count per-revolution.	100~8192	8192		Ν	6-18
F8-02	РGТуре	PG card type (0: Incremental encoder, 1: Sine/Cosine encoder)	0/1	0		Ν	6-18

5.4.9. Control Setup Parameters (F9)

Table 5.16 C	Control Setup	Parameters List
--------------	---------------	------------------------

Para No.	Display	Content	Range	Factory Setting	Unit	Live Chang	Ref Page
F9-00	Max Torq Comp	Maximum torque compensation (torque required to compensate at no load, 100% correspond to machine rated torque.)	0~100%	0	%	N	6-17
F9-01	SPDSourceSel	Speed given source selection: 0: Simulation; 1: Multi-segment 2: Internal; 3: Operator	0~3	2		Ν	6-14
F9-03	Spderr Set	Speed Deviation Set (100% correspond to machine rated speed.)	0~100	5	%	Y	
F9-11	Load Comp Enable	Load Compensation: 1 enable; 0 Unable	0/1	1		Ν	6-17
F9-13	Load Source Sel	Weighing source (0:SJT weighing, 1:-10-10V weighing, 2:0-10V weighing)	0/1/2	0		Ν	6-17
F9-19	UP Comp Bias	Up direction (clockwise) Compensation Bias	-100~ 100	0		Y	
F9-20	DOWN Comp Bias	Down direction (anti- clockwise) Compensation Bias	$-100 \sim 100$	0		Y	
F9-21	FULL Comp Pro	Full load compensation proportion	0~200	100		Y	

5.4.10. No-load Compensation Setup Parameters (FA)

Table 5.17 No-load Compensation Setup Parameters List

Para No.	Display	Content	Range	Factory Setting	Unit	Live Chang	Ref Page
FA-00	StratKP	Start-up proportional gain with no compensation.	0~50000	30		Ν	6-19
FA-01	StratKI	Start-up integral gain with no compensation	0~50000	750		Ν	6-19
FA-08	PLKP1	No compensation effect proportional gain 1	1~6500	3600		Ν	6-19
FA-09	PLTime	No compensation effect time	1~1000	900	ms	Ν	6-19
FA-11	PLKP2	No compensation effect proportional gain 2	0~50000	800		Ν	6-19
FA-12	PLKPMOD	No compensation effect proportional factor	0~50000	125		Ν	6-19

5.4.11. Special Parameters (FC)

Special parameters (FC) are mapping a part of factory parameters (FX) in customer level; users can access this part information by user level password. In these parameters, FC-00~FC-06 can only be viewed but not editable, while other parameters can be changed. Special parameters (FC) number, description and content are shown below in table 5.18. Table 5.18 Special Parameters List

Para No.	Display	Content Range		Factory Setting	Unit	Live Chang	Ref Page
FC-00	Zpulse_Init	Result of motor angle tuning, same as FX-00.	0~3277			Ν	
FC -07	Kplreg	Current ring proportional (FX-07), MODIFY WITH CAUTION!	0~65535	2000		Ν	
FC -08	KxIreg	Current ring integral (FX-08), MODIFY WITH CAUTION!	0~65535	500		Ν	
FC-13	AutoTuneModeSel	Sine/Cosine PG card auto- tuning selection (FX-20): 0:Rotation; 1:Stationary;	0/1	0		Ν	
FC-14	N Temp Alarm Ena	Negative temperature alarm (FX-21) 1: Alarm enable at -15C; 0: Alarm disable at -15C.	0/1	1		N	
FC-15	InitTuneEnable	When using Sine/Cosine PG card, whether need CD signal for position at power up 0:Yes.1:No (Can only set to 0 for SPG-V33 and above) Set to 0 can avoid electric noise at first power up.	0/1	0		N	FX-24
FC-16	CD DirSel	FC15 is available if set to 1. Set to 0 if AB & CD signal in same phase, otherwise set to 1. (Auto selected at motor angle tuning.)	0/1	0		Ν	FX-25

5.4.12. Environment Setup Parameters (A)

Table 5.20 Environment Setup Parameters List

Para No.	Display	Content	Range	Factory Setting	Unit	Live Chang	Ref Page
A0-00	Language Sel	Language selection		English		Y	
A0-01	User Password	Input/Setting user level password	000000~ 999999	000000		Y	
A0-02	Factory Password	Input/setting factory level password	000000~ 999999	0000000		Y	
A0-04	Contrast	Setting the LCD contrast level	0~10	5		N	

Chapter 6 Parameters Setup

6.1. Elevator Running Speed Setup

6.1.1. Elevator Rated Speed, Motor Rated Speed, Encoder pulses Setup

1. Elevator rated speed (F1-00) can be calculated through motor RPM, traction ratio, reduction ratio and traction sheave diameter.

Elevator rated speed is used for calculating the ratio between motor rated speed and elevator speed, modifying this parameter cannot change the actual running speed of elevator; if need to change elevator running speed, please modify parameter F6-02 (Speed Zoom)

2. Motor rated speed (F1-01) is the speed of traction machine (RPM) under elevator rated speed.

3. Encoder Pulse (F1-02) is the pulse number of encoder for hoistway counting at elevator running.

4 .Motor rated speed and elevator rated speed much follow the condition below:

Elevator rated speed =	Motor RPM	х	traction sheave diameter	x 3.14 x speed reduction ratio
			60 x 1000 x tra	ction ratio

For example: Motor rated speed is 1370 rev/min., traction sheave diameter 590mm, speed reduction ratio: 2/53, traction ratio 1/1, then:

elevator rated speed = $\frac{1370 \times 590 \times 3.14 \times 2}{60 \times 1000 \times 1 \times 53} = 1.6 \text{m/s}$

After setting elevator rated speed, motor rated speed, encoder pulse number, system record the relationships between traction ratio, speed reduction ratio, traction sheave diameter and relationships between shaft counting pulse and running distance. If the setting is incorrect, the following problems may happen:

1. The elevator running speed on digital operator or software is different with the elevator actual running speed.

For example, if encoder pulse or motor rated speed is set to a smaller value, speed indicated on the display will be higher than actual speed, after hoistway learning, floor height learned by the system will be larger than actual height.

2. As the floor height learned by the system is higher, the elevator deceleration curve will be steeper than the setting. This could result elevator cannot leveling sometimes (running out of leveling zone with sudden brake).

6.1.2. Inspection Run Speed

In inspection mode, elevator runs in slow inspection speed (F1-03), based on international standard, such speed should be no more than 0.6m/s. After elevator reaches top or bottom terminal, the running speed will be reduced to half of the inspection speed.

If bottom/top terminal (X8/X7) is valid, elevator slow down to 1/2 inspection speed to prevent exceeding the limit. When up/down jogging is removed, speed given will be instantly 0 without deceleration curves.

6.1.3. Rescue Speed

Under two conditions will elevator run in rescue speed (F1-05):

1. Due to fault or other reasons, elevator stops outside leveling zone, after elevator restores, it runs in rescue speed to the nearest floor and open door to release passengers;

2. When there is a hoistway counting error (ER14, Er18), elevator will run at rescue speed to the bottom floor for recalibration; After elevator reaches the bottom terminal, elevator will run at 1/2 of rescue speed to the bottom leveling position.

6.1.4. Least Speed

Least speed curve (F1-06) limits the lowest speed generated in the system. System will choose the elevator speed based on running distance, but the lowest speed is limited here. For certain site with very small floor distance, reduce this value could achieve normal running on this floor. Otherwise elevator cannot park at small distance floor, it will stops at the next floor.

6.2. Normal Running Speed Curve

Elevator can generate several optimal running curves based on rated speed setting to suit for different speed/distance running. But note lowest running speed curve is limited by F1-06.

Figure 6.1 Elevator Running Speed Curve

Acceleration, deceleration for normal running curve and Acce/Dece for S curve are set by the following parameters:

F1-10	Acceleration	B1)
1 1 10	/ cccici acion	0 /

F1-11	(Deceleration	B2
-------	---------------	----

- F1-13 (S curve P2)
- F1-14 (S curve P3)
- F1-15 (S curve P4)

Figure 6.2 Parameters Adjustments for Speed Curve

 Elevator running comfort level can be set through the above 6 parameters. (Comfort level is also drive control parameters.)

The relationship between **b1**, **b2**, **P1**, **P2**, **P3**, **P4** and running curve are shown in Fig. 6.2.

Increase parameters value, the corresponded curve will be steeper. While decreasing value will smooth the corresponded curve. Adjusting the above six parameters properly can reach good comfort level at elevator running, and meet the related standard.

6.3. Elevator Running Timing Diagram

6.3.1. Timing Diagram for Normal Running

The timing diagram for normal running is shown below in Fig. 6.3

If smooth start running speed (F1-04) is set to "0", smooth start running function will be disabled; smooth start time (F2-13) will be disabled too.

Figure 6.3 Elevator Timing Diagram for Normal Running

Detail explanation of timing diagram for elevator normal running is explained below in Table 6.1

Table 6.1 Timing definition for Elevator Normal Running

Time	Definition and Setup Instruction
	Control system will first output running contactor (Y9) command; check for feedback time, if
t0~t1	valid then system will give running direction and enable driving control based on the given
	direction.
t1~t2	Driving module output torque.
+2~+2	Waiting time for internal running signal (F2-03): In this period, driving module complete motor
12 13	excitation or finish load compensation torque output.
	Brake advance release time (F2-00):
	System output brake release command (Y6), brake release and brake arm feedback valid (e.g.
t3~t4	F1-31=1), waiting for brake advance release time (F2-00), and then running speed is given. Two
	functions for brake advance release time (F2-00): 1. Brake has enough time to release
	completely; this can avoid elevator startup with brake. 2. After brake release, traction sheave
	may rotate due to the load, with enough time traction sheave can be steady at zero speed then
	start in order to achieve comfort feeling at start. Based on the brake condition, set 0.8-1.5s for
	synchronous machine, and 0.3-0.5s for asynchronous machine.
	Smooth start time (F2-13): Elevator runs in start smooth speed (F1-04) for a period at start up,
t4~t5	this is to overcome part of the elevator static friction. This is normally set as 0.2s-0.4s, setting it
	too long may reduce the elevator start efficiency.
	Zero speed time (F2-0): When elevator runs to the destination floor and speed is lower than the
+6~+7	zero speed limit (F1-16), after zero speed time (F2-04), brake release output is disabled. If zero
10 17	speed time is set too short, brake may close before elevator completely stop. Normally this value
	is set to 0.2s-0.4s.
	Braking time (F2-01): After brake close, due to the subsequent flow and demagnetization, brake
	cannot lock on the traction sheave immediately and torque output is kept in the mean time.
t7~t8	After braking time, system drop internal direction command and torque output. This time can
	prevent the elevator slip due to braking lag. Based on the brake condition, set 0.8-1.5s for
	synchronous machine, and 0.3-0.5s for asynchronous machine.
	After system drop internal direction command, stop output current immediately may generate
t8~t9	large current noise. Time delay (F2-10) can be set to decrease output current gradually, finally
	stop the elevator after dropping the internal direction command.
	Time delay for running contactor open is 0.4s to prevent electric arc when contactor opens with
t9~t10	current. But braking, emergency stop, door lock protection do not have time delay, they act
	immediately.

6.3.2. Timing Diagram for Inspection Running

Timing diagram for elevator inspection running can be seen below in Figure 6.4

Figure 6.4 Timing Diagram for Elevator Inspection Running

Definitions and instructions for timing diagram above are shown below in table 6.2

Table 6.2 Timing Definition	for Elevator I	nspection	Running
-----------------------------	----------------	-----------	---------

Time	Definition and Setup Instruction			
t0~t9	Definition for t0~t9 are the same with elevator normal running			
	Inspection braking time (F2-02): At inspection running stop, system will not wait for elevator			
	zero speed to close brake. When jogging up/down instruction is dropped, brake will close at			
	once (with speed). For some asynchronous traction machines, holding time for torque output			
ta~t8	too long will result system trigger over-current protection. In this case decreasing the braking			
	time can eliminate such protection. For synchronous machine control, this value should be same			
	under normal running and set as 0.8s-1.5s, for asynchronous machine control, this value should			
	be set as 0.1s-0.3s.			

6.3.3. Timing Diagrams for Rescue Running

Figure 6.5 Timing Diagrams for Rescue Running (Same definition & setting with Normal Running)

6.3.4. Timing Diagram for Recalibration Running

6.4. Door Control

6.4.1. Door Open/Close Control

For door control, door open and close time is the related parameter; door limit is the related signal. Timing diagram for door open and close can be seen below in Figure 6.7 and Figure 6.8.

Figure 6.7 Timing Diagram for Door Open

Figure 6.8 Timing Diagram for Door Close

T0: The actual door-drive running time for door to open or close completely;

T1: Door open or close time (F2-08).

T1 should be 1s more than T0 to ensure the door normal open/close action, otherwise:

1. After system output door close signal, but door dose not close completely after T1 door close time (F2-08), elevator will open the door again, and door cannot be closed.

2. After system output door open signal, but door does not open completely after T1 door open time (F2-08), elevator stops the door open action, and door cannot reach the self-lock position.

Door close limit should be fixed in the position where it is only valid after door is completely closed, otherwise:

1. Door cannot close in inspection mode.

2. Door close limit valid, system stops output door close signal, door cannot close, system open the door again.

3. Door close limit is valid, system will open door after set time in F2-08. Door can still be closed under the holding force of door drive, but system will show a door close error, and elevator can run normally.

If the door open/close limit switches cannot be valid after installation, elevator will control door open/close based on time set in F2-08. If door open/close limit signals are normal; the control of door open and close will be based on door open/close limit signals.

6.4.2. Door Open Holding Time

Elevator run in auto mode, after landing, door open, and door will hold for following time:

1. After landing, door open, if elevator has no landing/car call, waiting time is door open holding time (F2-05).

2. After landing, door open, if elevator has only landing call, waiting time is door open holding time (F2-05) minus 2s.

3. After landing, door open, if elevator has both landing/car calls, waiting time is twice of door open holding time (F2-05) minus 2s.

4. If door open delay time (F1-30) is valid (Set as 1), and after door open, door open delay button is pushed, waiting time will be door open delay time (F2-06). After the delay time or press door close button to close door in advance and then reopen door again, door open delay function will be cancelled, unless push door open delay button again after door is open.

5. When elevator enables disabled function, if there are disabled landing/car calls on current floor, waiting time will be door open delay time (F2-06).

6.4.3. Door Control in Attendant and Special use mode

In attendant/special use mode, door must be closed manually. If door driving mode (F1-21) is set to 1, door close will be jog mode, if set to 0, door will close completely after pushing door close button, no need to push the button continuously.

6.4.4. Door Control in Inspection, Fire mode

In inspection mode, door open and close are both jog mode based on international standard.

- Door control in fire-mode:
 - 1. In fire mode, if elevator is running, elevator will land to the nearest floor but does not open door, then elevator return to fireman floor.
 - 2. In fire mode, if elevator stops at other floor, door will not open after fully closed, then elevator return to the fireman floor. If door is open, door will close at once, but before the door is completely closed, the door can be opened again by pushing the door open button.
 - 3. If elevator is at the fireman floor, it will open door and hold.
 - 4. In fire mode, except on fireman floor, on all other floors door can only be controlled in jog mode.

6.5. Homing Function Setup

Elevator in auto mode (no duplex/group control), if there are no landing/car calls in set time, elevator will return to homing floor.

- 1. Set homing floor (F0-01)
- 2. Set homing time (F2-07), this function is disabled if set homing time to 0.

6.6. Parking Function Setup

Normal elevator lock input:

- Electric lock input (X20) invalid, elevator in auto mode, it will return to parking floor (F0-03) after finishing all car calls.
- 2. Electric lock input (X20) invalid, elevator in attendant/special use mode, as door cannot close automatically, after finishing all car calls, door must be closed manually, elevator will then return to parking floor.
- 3. Electric lock input (X20) invalid, elevator in inspection mode, it will be locked at once.

Automatic Start/Stop:

Electric lock input (X20) valid, set auto parking (F1-28) as 1, automatic start time (F2-14), automatic stop time (F2-15) to correspond value to enable this function.

Electric lock input (X20) invalid, elevator will enter parking state; cannot set auto start/stop function. In elevator auto stop time and elevator need to run temporarily, turn the electric lock to invalid and restore to valid, elevator will run. After the running, operate the electric lock in same procedures, elevator will re-enter lock mode, until reach auto-start time, then it starts running again.

6.7. Fireman Operation Function Setup

Controller has three kinds of fireman operation mode; fireman mode (F1-23) can be set as "0, 1, and 2":

0: Normal fireman mode: When fireman input is valid, elevator lands to the nearest floor but doesn't open door, then it returns to the fireman floor(F0-02), it opens door and stops, meanwhile it enters into the fireman mode, elevator can run in fireman standard.

1: Fire emergency stop mode: When fireman input is valid, elevator lands to the nearest floor but doesn't open door, then it return to the fireman floor (F0-02), it opens door and stops. Meanwhile elevator stops running, until fireman input is eliminated.

2: Fireman control mode:

It includes two steps, step 1 is fire emergency return, and step 2 is fireman operation. Only after elevator returns to the fireman floor could step 2 be operated.

1. Fireman input switch has two states (ON/OFF); it is connected to X12 on main control board. Fireman operation switch has three states (ON/START/OFF), ON is connected to fireman input (by-pass input) on COP, START is connected to the door close input in parallel (For fireman to close door, when fireman turns the key to the START position, point ON is still valid, after releasing switch will automatically return to ON.)

Step1: Fireman input X12 is valid, if elevator is running, it will cancel all car call and landing call and stop at the nearest floor, but doesn't open door and then return to the fireman floor; if elevator is under stop and door open state, elevator will close door at once and return to the fireman floor. After elevator returns to the fireman floor, it opens door and stop running.

Step 2: Elevator in fire mode, return to fireman floor then stop running; At this time fireman operation running can be activated by fireman operator switch, switch to ON/STAR, elevator will run under fireman operation (Only serve one car call, door open and close follow fireman operation function). After switch to ON/STAR and elevator finished serving fireman operation, if elevator already leave the fireman floor, and switch is turned to OFF, at this time elevator will keep running. Only when elevator returns to the fireman floor again then it will stop running.

2. After elevator enters fire mode, light curtain input will be invalid. Elevator will exit from fire mode only when fireman input switch, fireman operation switch are both in OFF state.

6.8. Rear Door Control Setup

6.8.1. Different Mode Selection

On the same floor, both front/rear doors can be opened; there are different modes (0-n) available based on customer requirements.

Parameters setup for rear door mode is F1-22.

n=0: single door mode.

n=1: Rear door mode 1, only one door acts at every floor.

- n=2: Rear door mode 2, two doors can open on some floors, but they cannot open at the same time, if one door needs to be opened, the other door must be closed first. (Two sets of COPs are needed for both front and rear door.)
- **n=3**: Rear door mode 3, two doors can open at some floors, after landing on these floors, two doors open at the same time. (Only one set of COP is needed, HOP calling address is same for both doors.)
- **n=4:** Rear door mode 4, two doors can open at some floors, after landing on these floors, two doors open at the same time. (Two sets of COPs are needed for both front and rear door.)
- n=5: Rear door mode 5, two doors can act at some floors, when elevator runs to such floors, door will open as per requirement, for example: front/rear door will open on front/back car call and landing call. Both doors will open on both sides car/landing call. (Two sets of COPs are needed for both front and rear door.)

According to the rear door mode, HOP address setting and COP wiring are different too:

HOP address setting

- 1) When rear door mode on controller is set as **0**, **1**, **3**, HOP address is same as usual;
- 2) When rear door mode on controller is set as 2, 4, 5, HOP address is set as below:
 - a. **1~32** is the absolute floor number at front door side:
 - 1 is the bottom floor, 2 is second to bottom floor, maximum number is 32, total 32 floors.
 - b. **33~64** is absolute floor number at rear door side:
 - **33** is the bottom floor, **34** is second to bottom floor, maximum number is **64**, total **32** floors.
 - c. If there is only one door on some floors, then the HOP address for the other door is empty.
 - **Example 1:** Elevator has one basement floor with both front and rear doors, on this floor HOP address is 1 for front door and 33 for rear door.
 - **Example 2:** Elevator has one basement floor with only front door, and one ground floor with both front and rear doors, on the basement floor HOP address is 1 for front door and empty for rear door. On the ground floor HOP address is 2 for front door and 34 for rear door.

C.O.P button wiring:

- 1) When rear door mode on controller is set as **0**, **1**: **1**~**N** floor buttons are connected to the COP terminal as usual.
- 2) When rear door mode on controller is set as 2, 4, 5: set total floor no. N, then the 1~N car call ports correspond to 1~N floor car call buttons at front door, 1 is the bottom floor, N is the top floor. N+1~2N floor car call ports correspond to the 1~N floor car call buttons at rear door, N+1 is the bottom floor, 2N is the top floor.
 - For example: Elevator has 6 floors (1~6), no basement, 3rd floor has double entrance; other floors have only front entrance. Then car call buttons 1~6 at front door should be connected to 1~6 car call ports, car call button 3 at rear door should be connected to N+3=6+3=9 car call port.

When rear door mode is **1**, **2**, **3**, **4**, **5**, need to install two sets of door open/close buttons, this is to open front and rear door separately in inspection running.

If rear door mode is 1, and there is one set of door open/close buttons, please set parameter FU18 to "ON". In other mode, if there is only one set of door open and close buttons, in inspection running, only front door can be opened by door open button, rear door cannot be opened by the button.

6.8.2. Rear Door Condition Setup

Front door setting parameter (F4-04) and rear door setting parameter (F4-05) are required to set front or rear door open on certain floors. In single door mode, these two parameters are invalid. In rear door mode, if set F4-04 to "ON" for some floors, front door can open on these floors, if set F4-04 to "OFF", front door cannot open on these floors. This is same for rear door setup. Please set both doors condition based on actual situation to avoid door open mistake.

6.9. Input Type Setup

Input type on main control board (F3-00) and COP board (F3-01) can be changed based on actual ON/OFF state. When switch is at valid position/state and switch is closed, then its input type is ON. When switch is at valid position/state and switch is open, then its input type is OFF. Input type setup on main control board and COP board can be seen below in table 6.3

Name	Port	Position	Definition	Parameters	Default Input Level	Output Switch Default State	Indicator Default State
	XO	J3-8	Inspection Input	F3-00-00	ON	OPEN	OFF
ard	X1	J3-7	Run up Input	F3-00-01	ON	OPEN	OFF
l Bo	X2	J3-6	Run Down Input	F3-00-02	ON	OPEN	OFF
ontro	X3	J3-5	Top Terminal 2 Input	F3-00-03	OFF	CLOSE	ON
in Co	X4	J3-4	Bottom Terminal 2 Input	F3-00-04	OFF	CLOSE	ON
Ма	X5	J3-3	▲Top Limit Input	F3-00-05	ON	CLOSE	ON
	X6	J3-2	▲Bottom Limit Input	F3-00-06	ON	CLOSE	ON
	X7	J3-1	Top Terminal 1 Input	F3-00-07	OFF	CLOSE	ON
	X8	J2-8	Bottom Terminal 1 Input	F3-00-08	OFF	CLOSE	ON
	X9	J2-7	Up Leveling Input	F3-00-09	ON	OPEN	OFF
00-	X10	J2-6	Down Leveling Input	F3-00-10	ON	OPEN	OFF
	X11	J2-5	Motor internal SC contactor feedback	F3-00-11	ON	OPEN	OFF
	X12	J2-4	Fire Input	F3-00-12	ON	OPEN	OFF
	X13	J2-3	Emergency Stop Input	F3-00-13	ON	OPEN	OFF
E	X14	J2-2	Door Interlock Input	F3-00-14	ON	OPEN	OFF
bard	X15 J2-1 Brake Feedback/Main Contactor Input		F3-00-15	ON	OPEN	OFF	
ol Bc	X16	J1-10	Assist contactor feedback Input	F3-00-16	ON	OPEN	OFF
ontre	X17	J1-9	Brake Contactor Feedback Input	F3-00-17	ON	OPEN	OFF
in C	X18	J1-8	ARD function Input	F3-00-18	ON	OPEN	OFF
Ма	X19	J1-7	Spare	F3-00-19	ON	OPEN	OFF
	X20	J1-6	Electric Lock Input	F3-00-20	ON	OPEN	OFF
	X21	J1-5	Thermal Switch Input	F3-00-21	OFF	OPEN	OFF
	X22	J1-4	Re-leveling condition Input	F3-00-22	ON	OPEN	OFF
	X23	J1-3	Re-leveling sensor Signal Input	F3-00-23	ON	OPEN	OFF
	X24	J1-2	Spare	F3-00-24	ON	OPEN	OFF
	X25	J1-1	Spare	F3-00-25	ON	OPEN	OFF

Table 6.3 Input Type Setup

Name	Port	Position	Definition	efinition Parameters		Output Switch Default State	Indicator Default State
q	X29+	J6-3	Emergency Stop Input +	52 00 20			
Boar	X29-	J6-4	Emergency Stop Input -	F3-00-29	ON	OPEN	OFF
trol 0	X30+	J6-5	Door Interlock Input +	52 00 20	01	ODEN	055
Cont F3-	X30-	J6-6	Door Interlock Input -	F3-00-30	ON	OPEN	OFF
lain	X31+	J6-7	Spare +		ON	OPEN	
2	X31-	J6-8	Spare -	F3-00-31			OFF
	KMV1	J9-2	Door open limit 1 Input	F3-01-07	OFF	CLOSE	
	GMV1	J9-3	Door close limit 1 Input	F3-01-06	OFF	CLOSE	
	KMV2	J10-5	Door open limit 2 Input	F3-01-05	OFF	CLOSE	
	GMV2	J10-6	Door close limit 2 Input	F3-01-04	OFF	CLOSE	
H	KAB1	J9-4	Safety Plate 1 Input	F3-01-18	OFF	CLOSE	
F3-0	KAB2	J9-7	Safety Plate 2 Input	F3-01-17	OFF	CLOSE	
ard	CZ	J9-5	Over load Input	F3-01-15	ON	OPEN	
ol Bc	MZ	J9-6	Full load Input	F3-01-13	ON	OPEN	
ontro	QZ	J9-8	Light load Input	F3-01-14	ON	OPEN	
ar Cc	KZ(50%)	J9-9	50% Load Input	N/A		OPEN	
Ü	SZH	J9-10	Attendant Input	N/A		OPEN	
	SZY	J10-1	Special Use Input	N/A		OPEN	
	SZS	J10-2	Drive by-pass Input	N/A		OPEN	
	ZHS	J10-3	Attendant Up	N/A		OPEN	
	ZHX	J10-4	Attendant Down	N/A		OPEN	

Table 6.3 Input Type Setup (Cont'd)

If the top/bottom limit circuit is closed in normal state, default input level shows "ON". If the top/bottom limit circuit is open in normal state, default input level shows "OFF".

6.10. Service Floor Setup

Non-stop floors in the system can be set through F4-00 and F4-01. For the floors elevator can land, set "ON", for the floors elevator cannot land, set "OFF". After setting F4-00, F4-01, elevator cannot land to the set floors in any case. Based on this function (refer to the function selection table), non-stop on certain floor in set time function is available too. Between the non-stop beginning time (F2-14/15) and ending time (F2-16/17), if elevator cannot land on some floors, please set the non-stop floors by setting F4-02 and F4-03 "OFF".

6.11. Weighing Device Setup

When using SJT-150 or SJT-300 weighing device, load detection is available through communication with main control board on CAN BUS. See below for setup procedures:

- 1. Enable weighing device F1-29=1, F9-11=1;
- 2. Perform light load and full load self-learning procedures;
- 3. According to the compensation condition, adjust the compensation coefficient F9-00.
- 4. For elevator with no compensation chain, adjust F1-18 based on actual condition on top and bottom floor:
 - a) Adjust the simulated load compensation gain in inverter until elevator runs down from top floor with no sliding;

- **b)** Move the empty elevator to bottom floor, increase load compensation adjustment parameter until elevator runs up from bottom floor with no sliding;
- c) The adjustment range for this parameter should be 0-12.

6.12. Duplex Control Setup

Controller has internal integrated duplex module, two elevators are connected through CAN1 in parallel, corresponded parameters need to be set to achieve duplex control.

Figure 6.9 Connection for Duplex Control

Setup procedures:

- 1. Enable duplex control, F1-25=1
- 2. Set duplex elevator number F1-24, elevator A is set to 0, elevator B is set to 1.
- 3. Both elevators must have same fireman floor. (Otherwise call registers will be mixed up)
- 4. Call address should be set the same with single elevator.

After setup please save the parameters, reset the power and updating the communication address.

6.13. Group Control Setup

Main control board and group control board are connected through CAN1 port. (See group control board manual), corresponded parameters need to be set to achieve group control.

Setup procedures:

- 1. Enable group control, F1-26=1;
- 2. Set elevator number in F1-24, the number should be 0-7 for elevator A-H.
- 3. All elevators must have same fireman floor. (Otherwise call registers will be mixed up)
- 4. Call address should be set the same as single elevator.

After setup please save the parameters, reset the power and updating the communication address.

6.14. Leveling Adjustment Setup

After elevator landing, if elevator speed curve has no problem (i.e. there is no sudden stop and overrun leveling zone at elevator landing) and elevator runs outside leveling zone (it stops higher than leveling zone in up-running, lower than leveling zone in down-running), need to decrease leveling adjustment parameter F1-17 (default 50); if elevator cannot reach leveling position(it stops lower in up running, higher in down running), increase leveling adjustment parameter F1-17, general range for adjustment is 40-60, if the adjustment is big, please adjust driving parameter PI, or speed curve shape (F1-10~F1-15).

6.15. Floor Indication Setup

In parameter F0-05~F0-6, we can set third bit display, first two bit can be figure, characters or "-", third bit can only be the following capital characters: ABCDEFGHIJKLMNO. If only need two bits, set the first two bits only and third big is empty. (Third bit indication should be supported by the HOP board, otherwise it cannot display normally.)

6.16. Special Function Selection

To meet certain special requirements from customers, this control system has included some customized functions (F4-06).

Table 6.4 Special Function List

Number	Instruction		
F4-06-00	After elevator stops, based on current floor, if there is no landing/car call ahead of the current floor in previous running direction, system will cancel all the car calls.		
F4-06-06	ON: For 7-segment display, Y25 is inspection mode output (must ensure the highest digit is not used). For other display mode, inspection mode output do not require to set Y25.		
F4-06-07	ON: At elevator running, direction arrow output with flash.		
F4-06-08	After setting 7-segment display output, when electric lock enabled, floor will still display (ON)/no display (OFF)		
F4-06-09	ON: Elevator can cancel registered car call at running. If all call canceled, elevator stop in nearby floor.		
F4-06-10	ON: Brake open when receiving inverter running feedback signal enable. OFF: Brake open 0.5s after receiving inverter running feedback signal enable.		
F4-06-15	ON: When setting 7-segment display mode, at electric lock enable or safety circuit open, turn off all display (all relays have no output).		
F4-06-16	ON: When door lock is closed, door close limit must be valid too. OFF: Door lock state is not related to door close limit.		
F4-06-17	ON: When elevator stops in inspection mode, inverter direction given and brake are released together.OFF: When elevator stops in inspection mode, inverter direction given drop is 0.5s later than brake close.		
F4-06-18	ON: In rear door mode, elevator only installs one set of door open& close buttons. OFF: In rear door mode, elevator installs two sets of door open & close buttons.		
F4-06-21	ON: In inspection mode, door cannot open outside levelling zone. OFF: In inspection mode, door can open at any position.		
F4-06-22	ON: Up/Down (single) collection OFF: Full selective collection		
F4-06-23	ON: Use SJT-300 weighing device through CAN BUS OFF: Use SJT-150 weighing device through RS485		
F4-06-25	ON: When elevator cannot open door at current floor, it can automatically register the closest floor, approach and open door in that floor.		

6.17. Motor Parameters Setup

First, please set the motor parameters based on actual machine.

F5-00: motor type. 0: synchronous outer rotor machine; 1: asynchronous machine, 2: synchronous inner rotor machine.

Please make sure the machine type is set correctly, as system will perform motor auto-tuning and vector control based on motor type.

Also, please input following motor parameters based on the machine nameplate or user manual to ensure the accuracy of system generated motor digital model and vector control coupling.

- 1. F5-01: Motor poles
- 2. F5-02: Motor rated frequency
- 3. F5-03: Motor rated power
- 4. F5-04: Motor rated speed (RPM)
- 5. F5-05: Motor back-EMF (this parameter is only valid for asynchronous machine)
- 6. F5-06: Motor phase inductance (this parameter can be acquired from motor auto-tuning)
- 7. F5-07: Motor phase resistance (this parameter can be acquired from motor auto-tuning)
- 8. F5-08: Motor rated current
- **9.** F5-09: No-load current (this parameter is only valid for asynchronous machine, it can be acquired from motor self-learning)
- 10. F5-10: Motor rated Slip (this parameter is only valid for asynchronous machine)

Beside above, when some parameters are not accurate, please perform motor parameter auto-tuning. For the drive versions above 0007, parameter auto-tuning is not necessary.

6.18. Elevator Running Speed Setup

Elevator rated speed (F1-00) and motor rated speed (RPM) (F1-01) are used to calculate the ratio between elevator rated running speed and motor RPM. Also, with encoder pulse number per cycle (F1-03), we can get the relationship between each pulse and traveling distance in hoistway, and this achieves the distance detection of elevator running. Therefore changing F1-00, F1-01 will only change their ratio, but not elevator actual running speed.

When F1-03 for hoistway counting is from inner pulse source, pulse number in one cycle (F1-03) = pulse number of motor encoder (F8-00) / PG frequency division ratio (F8-01). Rated speed of traction machine (F1-01) = Motor rated speed (F5-04).

If F1-03 for hoistway counting is from outer pulse source (i.e. speed limiter encoder, must adopt special PG card), F1-03 should be set as pulse number in one cycle from outer pulse source, Rated speed of traction machine (F1-01) = Outer pulse source speed (i.e. speed limiter speed).

Speed given instruction can be seen below in figure 6.10.

Figure 6.10 Speed Given Instruction

If need to reduce the elevator actual speed, please change the value of speed ratio (F6-02), when F6-02=100%, elevator runs in rated speed; reduce F6-02 elevator actual speed will decrease in corresponded ratio.

6.19. Speed Control Setup (PI Adjustment)

6.19.1. Speed Control Setup with Single PI Adjustment

For speed control under vector control, there are two ways, F7-00: when multi-section PI enable is set 0, PI does not change with speed given change. Instead, it is a fixed value for the whole elevator speed range, which simplifies setup procedures.

This is the most used method, the flow diagram can be seen below in figure 6.11.

Figure 6.11 Speed Adjustments 1

6.19.2. Speed control Setup with Multi-Section PI Adjustment

For speed control under vector control, F7-00: multi-section PI enable is set 1, speed control function can be performed by PI changed in multi-section. In this control mechanism, parameters in F6-04 and F6-05 will not take effect all the time, instead, 4 groups of PI value F7-05~F7-12 are used to perform speed control.

Figure 6.12 Speed Adjustments 2

F7-05, F7-06: Group 1 PI; it is generally adopted in low speed period at motor start.

F7-07, F7-08: Group 2 PI; it is generally adopted in middle speed section at acceleration period or steady-speed section at low speed period.

F7-11, F7-12: Group 4 PI; it is generally adopted in deceleration period.

Switching frequency for the above groups of PI parameter are set in F7-01~F7-04: frequency setting of PI effective range.

Group 1 PI effective range:

When motor starts from zero speed or in acceleration period, if the current frequency given is smaller than F7-01, system will adopt F7-05, F7-06 of group 1 PI to adjust the speed. To enable elevator quick stable at

zero speed when brake release and follow the speed curve quickly in initial acceleration, F7-05 and F7-06 can be set slight bigger.

Group 2 PI effective range:

After motor starts, when speed (acceleration) is larger than the set frequency in F7-01 and smaller than F7-02, system will adopts F7-07, F7-08 of group 2 PI to adjust the speed. When motor running speed is larger than the set frequency in F7-02, system will adopts F6-04 and F6-05.

Group 3 PI effective range:

When motor speed is smaller than the set frequency in F7-03 (deceleration), system will adopts F7-11,
 F7-12 of group 3 PI to adjust the speed. This group of PI parameters is used for adjustment in deceleration to stop period. If F7-03 is 0, system will adopt the last group of PI parameters before deceleration.
 For different groups of PI effective range please see figure 6.13 below.

Figure 6.13 Effective range for different groups of PI

6.20. Load-Compensation Torque Output Setup

Parameters related to load compensation torque output control:

- 1. The parameters related when using of weighing device from Blue-light:
 - 1) F1-29: Weighing device enable (1: enable, 0: disable)
 - 2) U6-03: weighing value, the current load situation
 - **3)** F1-18: weighing adjustment, adjust the compensation according to floor number, it is suitable for elevator without compensation chain.
- 2. Load simulative input, input range+10V~-10V or 0V~+10V, this input cannot be changed.
- 3. Load compensation source selection F9-13,
 - 0: Internal serial signal, it can only be used with Blue-light weighing device;
 - 1: External simulative input +10V~-10V;
 - 2: External simulative input 0V~+10V.
- **4.** Maximum torque compensation F9-00; if set to 60%, the maximum output torque compensation at full load will be 60% of the rated torque.
- 5. Torque control output enable F9-11; if set to "1", system will output torque based on the source of F9-13 and multiply by F9-00; if set to "0", load compensation is disabled.

Output control diagram of load compensation torque can be seen below in figure 6.14.

Figure 6.14 Load Compensation Torque Output Control

6. In synchronous machine control, as there is no compensation chain for low building, Blue -light weighing device can only measure the load in cabin and cannot detect the rope weight variation on different floor. In this case load compensation adjustment (F1-18) need to be used.

Adjustment Procedures:

- **1)** Perform no-load, full-load learning;
- 2) Run the no-load elevator to top floor;
- **3)** Adjust simulative load compensation gain in inverter until elevator does not slide when runs down from top floor.

4) Run the no-load elevator to bottom floor, increase the load compensation adjustment parameter (F1-18) until elevator does not slide when runs up from bottom floor.

6.21. Encoder Parameters Setup

Set F8-00 based on encoder pulse number. Encoder pulse usages can be seen below in Figure 6.15

Figure 6.15 Encoder Pulse Usages

6.22. Start without Load Compensation Setup

When using BL3 series integrated controller with Sine/Cosine PG card, it is possible to achieve comfort start without load compensation by proper setup in FA group parameters. (It means elevator can reach the same effect of load compensation even without weighing device.)

- 1. Note for starting without load compensation:
 - 1) PG card type, F8-02 is set to "1" (Sine/Cosine PG card)

- **2)** Weighing compensation invalid, confirms F9-11 is set to "0" to disable weighing compensation and enable FA group parameters.
- 3) Drive software version, confirm version is 0005 or above.
- 2. Adjustment method for elevator starting without load compensation:
 - 1) Principles: As can be seen in figure 6.16 below, when brake open, based on the position feedback from Sine/Cosine PG card, system can calculates the necessary torque required for motor to remain the steady position under current load, and it gives corresponded torque at once to minimize the traction sheave movement and to achieve comfortable start.

Figure 6.16: Flowchart for elevator starting without load compensation

2) Parameters: Parameters related to function can be seen below in table 6.5.

Parameters	Display	Factory	Fast Brake	Slow Brake
No.	Display	Setting	Recommendation	Recommendation
FA-00	StratKP	30	KEEP	KEEP
FA -01	StratKI	750	KEEP	KEEP
FA -08	PLKP1	3600	4800	3600
FA -09	PLTime	900	700	KEEP
FA -11	PLKP2	800	KEEP	KEEP
FA -12	PLKPMOD	125	KEEP	KEEP
F2-00	Brake ON Time	0.5	0.9	1
F9-00	Max Torq Comp	0	KEEP	KEEP
F9-11	Load Comp Enable	1	0	0

Table 6.5: Elevator start without load compensation parameters list

3) Adjustment method: Main parameters used are FA-08, FA-09 and FA-11.

FA-09

This parameter is the working time for starting without load compensation after brake opens, it must be set according to the actual brake opening time, if the time is too short, elevator will slip as this action will be over before brake fully opened; Also the value of F2-00 (brake opening time before running) must be 100ms longer than the value of FA-09, so that this action can finish before speed curve start.

FA-08 and FA-11

Two gain parameters for the starting without load compensation action, these two parameters can be adjusted according to the elevator slipping condition and comfort level, if the slipping is too much please increase the value of FA-08; if the traction machine gets vibration, please reduce this value; during the period of torque keeping, if

there is slight slipping or small back-and-forth movement on traction sheave, please increase the value of FA-11, if there is vibration, please reduce this value.

1. During commissioning, besides the mentioned 3 parameters, other FA group parameters can be kept with factory setting.

2. For different versions of program, the name of FA group parameters might be different, but their positions remain the same. As a result, only adjust FA-08, FA-09, FA-11 despite the operator version.

3. The setting value of above parameters is just for reference, as the PG card is not same in different job side; please adjust above parameters based on site condition.

4. F9-00 is the pre-set torque when the starting without load compensation function is enabled. Generally there is no need to change its value, please keep it with factory setting (0)

Chapter 7 Commissioning

7.1. Important Reminder

- 1. Thanks for purchasing our product, please read this manual and related instruction thoroughly before processing with installation, connection (wiring), operation, maintenance and inspection. To avoid any damage/loss of the products or accident to people, please make sure you have sound knowledge of the device and familiar with all safety information/precautions before processing to operate the control system.
- **2.** Before commissioning and running the product, please read the manual carefully and refer to this manual during commissioning and running.
- **3.** Make sure that all the mechanical devices are installed properly beforehand, especially the devices in hoistway (the devices that should be set in the machine room depends on the situation of the machine room).
- 4. Make sure that the installation and commissioning for the devices, which should be finished before commissioning of the control system, have been completed.
- **5.** Before commissioning, it is necessary to get signature confirmation from the person who are responsible for mechanical installation and commissioning.
- 6. Make sure that all the mechanical devices and other devices which are related to the system commissioning are installed and tested properly.
- 7. Make sure that there are no unsafe factors which could cause injuries and damages to personnel and devices.
- 8. Commissioning should be carried out by qualified personnel.
- 9. Site should meet the conditions for commissioning and running.
- **10.** When doing commissioning for both electric and mechanical parts, technicians for both parts should collaborate.
- **11.** If this manual could not meet your requirement, please contact our company at once to acquire help and to avoid accident and loss.
- 12. Before system commissioning, make sure all the conditions are sufficiently prepared.

7.2. Inspections before Power On

After electric system is installed, please check the electric system carefully and pay attention to the following items:

- 1. Compare with the manual and electric diagram, check if the connections are all correct.
- 2. Check if there is interference between high voltage part and low voltage part. Use a multi-meter to measure the resistor in different circuit, resistor to earth must be infinity big.
- **3.** Please check if wiring from power supply to the control cabinet and traction machine is correct, this is to avoid damaging the controller after powering on.
- **4.** Check wiring between encoder and controller, coaxial degree of encoder and traction machine shaft, wiring between encoder and traction machine.
- **5.** Check if the enclosure of the controller and motor, cabin, landing door are reliably earthed to ensure the safety to personnel.

6. Make sure correct wiring of the terminal block **J1** on control board to avoid any damage to the main control board.

CAUTION

Controller has special digital operator, it should be connected to the socket J232 on main control board by a special cable before commissioning. USB serial communication cable is also available; connect it to the port USB0 on main control board to computer, then do commissioning with special software. (please refer to commissioning software manual)

7. Make elevator stop at the middle floor.

8. Turn electric lock to position "ON".

7.3. Power On and Inspection

7.3.1. Things need to confirm before Power On

- 1. Confirm all the air switches in control cabinet are open.
- 2. Confirm mode switch on the controller is at "inspection", emergency stop button is pressed.
- **3.** Confirm inspection switches on car top and cabin are both in "normal" positions.
- 4. Confirm terminal resistor for bottom HOP is connected
- **5.** Check voltage on the main power supply: 3 phase voltage is 380±15%VAC, phase-phase voltage difference is smaller than 15VAC, phase-N voltage is 220±7%VAC.
- 6. Confirm the wire specification and main switch capacity match the design requirement.

7.3.2. Inspection after Power On

- Close main power switch Q1, if phase relay KXX green LED on, it means the phase sequence is correct, otherwise red LED on, means phase sequence is incorrect, in this case please switch off the main power switch, exchange any two phase, and repeat the above inspection.
- 2. Inspect the terminal voltage on transformer **TC1**, the values should be in the range of ±7% of the indicated value, if voltage exceeds this range, find out the problem and correct it.
- 3. if the above inspections are normal, then do the following process:
 - a. Switch on F4: Voltage between terminal 100-101 should be 110±7%VAC
 - Voltage between terminal 103-102 should be 110±7%VDC
 - **b.** Switch on F5: Voltage between terminal 200-201 should be 220±7%VAC
 - c. (Note: Connect digital operator before power on) After power on, first see if the main menu display is correct on LCD indicator. For example: elevator state, fault state, door lock state, current floor, running speed and else. In this way we can tell if the controller is working properly and whether 24V power supply is normal. Interface on digital operator LCD screen can be seen below in figure 7.1

Figure 7.1 Digital Operator LCD Screen Interface

Chapter 7: Commissioning

d. Terminal voltage of switch power supply unit:

 Table 7.1 Terminal Voltage for switch power supply unit

Terminal L~ N		24V \sim G		
Voltage	220±7%VAC	24.0±0.3VDC		

- e. After above inspections, do the following inspections:
 - Check door lock circuit.
 - Check leveling zone signal, top/bottom limit signal.
 - Check electric lock, set the elevator auto-start/off time to "0', set electric lock switch to "ON", LCD screen will then display elevator state as "INSP", if set electric lock switch to "OFF", LCD screen will show "STOP".
 - Check door open/close system, do corresponded adjustment if necessary.

7.4. Parameter Setup

It is very important to set Parameters based on actual site condition, as this is the foundation for controller or control system to maximize its performance. For parameter setups please refer to chapter **4-6**. When setting parameters, please pay attention to the following points:

- Set the motor basic parameters from motor nameplate namely motor parameter 1 content (F5 group). For example, motor type, pole numbers, rated frequency, rated power, rated RPM, rated current, Back-EMF (only for synchronous machine), no-load current (only for asynchronous machine), phase inductance, phase resistance and else. Amount which phase inductance, phase resistance and other parameters that are unknown can be acquired from motor -tuning; if system moment of inertia is unknown, leave it as default.
- 2. Set encoder parameter correctly (F8 group), for example encoder pulse, PG frequency division coefficient.
- 3. Set elevator running parameters correctly, such as motor rated RPM, encoder pulse (after frequency division.)
- 4. Set input type correctly, they should match the actual contactors, relays and hoistway contacts and switches.

7.5. Motor Parameters Tuning

Controller has motor parameter tuning function. Base on the input basic motor parameters, system automatically performs control, detecting, calculation, and recognize the unknown motor parameters required. For example, phase inductance, phase resistance, no-load current (only for asynchronous machine) and else.

Unless all the necessary motor parameters are known (F5 group), for example phase inductance (F5-06), phase resistance (F5-07) and all other parameters, please set the parameters directly and there is no need to run the motor parameter tuning. Otherwise motor parameter tuning is necessary.

7.5.1 Motor Rotation Tuning

Motor rotation tuning process is shown below:

- 1. Make motor (traction machine) with no load (do not attach the steel rope);
- 2. Short circuit running contactor output Y9 (J4-7) and COM3 (J4-6), make running contactor closed;
- **3.** Short circuit brake output Y6(J4-10) and COM3 (J4-6), close braking contactor and release the brake; On digital operator, perform the motor tuning command according to Figure 7.2

Figure 7.2 Motor Parameter tuning workflow

After press the "Enter" button, motor parameters tuning start. Motor will remain static after a short vibration, system continues to supply current and motor generates current noise. The whole process takes about 5 seconds.

If tuning success, return to parameter setting menu, check motor phase inductance (F5-06), and motor phase resistance (F5-07). They should all be adjusted to the correct value. Generally, one successful tuning is enough. However, if want to acquire more accurate results, one can record the results of this tuning, then repeat the process, and take the average value from tuning results.

If self-learning fails, operator will indicate the error code, please refer to the troubleshooting table in chapter 8, find out the reason and solve the problems, then start motor parameter tuning again.

7.5.2 Motor Static Tuning

Motor static tuning process is as follows.

1. Close brake.

2. Select tuning method parameter FX-20 to "1" on digital operator.

3. Short circuit running contactor output Y9 (J4-7) and COM3 (J4-6) to make it close; (If the system has a separate star short circuited contactor, close it as well).

On digital operator, perform the motor tuning according to Figure 7.2

Display: Success or failure

Figure 7.2 Motor Parameter Tuning Flowchart

If tuning success, return to parameter setting menu, check motor phase inductance (F5-06), and motor phase resistance (F5-07). They should all be adjusted to the correct value. Generally, one successful tuning is enough. However, if want to acquire more accurate results, one can record the results of this tuning, then repeat the process, and take the average value from tuning results.

If self-learning fails, operator will indicate the error code, please refer to the troubleshooting table in chapter 8, find out the reason and solve the problems, then start motor parameter tuning again.

7.6. Motor Initial Angle Tuning

For synchronous motor, besides the above parameter tuning, it is also necessary to perform motor initial angle tuning. Otherwise the machine cannot run normally, or even sever slip. Therefore, tuning initial angle is very important for synchronous machine. Before proceed to load run, synchronous machine must first perform initial angle tuning successful and no load running successful. For the tuning procedures, please refer to figure 7.3.

7.6.1. Tuning Procedures for Machine with Incremental Encoder

1. Synchronous motor (traction machine) must not have any load (don't hang on steel ropes);

2. Short circuit running contactor output Y 9 (J4-7) and COM3 (J4-6) to make it close;

3. Short circuit brake contactor output Y6 (J4-10) and COM3 (J4-6) to make it close and open brake;

On digital operator, tuning initial angle is as follows:

Display: Success or failure

Figure 7.3 Motor Initial Angle Tuning flowchart

After pressing "Enter", tuning starts. Motor vibrate at beginning or runs forward / reverse a little, then it accelerates forward to a certain speed (facing to traction sheave, anticlockwise rotation is forward direction), after 20s of constant speed running, motor stops; Then it accelerates forward to a certain speed, and after 20s running in constant speed, it stops again; Then it accelerate forward to a certain speed in third time, and after 20s running in constant speed, it stops and indicates "Success". The whole tuning procedure lasts around 80s.

After tuning successful, perform a test run according to chapter 4 "4.4 Parameter commissioning in Digital Operator". Make traction machine accelerate forward from zero speed to rated speed, run it in constant speed for a while and observe the running condition; make motor run in opposite direction in same way.

After test run with digital operator, please remove the short circuit on "running contactor output" and "brake control output". Press jog up button on control cabinet to perform inspection running, observe motor running condition; Then press jog down button on control cabinet to perform inspection running, observe motor running condition.

When jog up (down), if the real running direction of cabin is down (up), please set F6-03 to correct it. 0: anticlockwise rotation is down, 1: anticlockwise rotation is up, set based on actual site condition.

After the above test running is finished, attach the steel rope and run motor with load.

For the site already had the steel rope, it can also perform the static initial angle tuning, the processing and notes can be seen in chapter 7.6.2.2.

7.6.2. Tuning Procedures for Motor with Sine/Cosine Encoder

For synchronous motor with Sine/Cosine Encoder, there are two methods for tuning initial angle.

7.6.2.1 Rotation Tuning

For this tuning method, make sure the motor have no load and brake is released.

Procedures required before tuning:

- 1. Ensure synchronous motor (traction machine) has no load (DO NOT attach steel ropes);
- 2. Short circuit running contactor output Y9 (J4-7) and COM3 (J4-6) to make it close;
- 3. Short circuit brake contactor output Y6 (J4-10) and COM3 (J4-6) to make it close and release the brake;

Set tuning method parameter FX-20 to "0" on digital operator (0: rotation tuning, 1: static tuning), after setting motor parameters (F5) and encoder parameters (F8) correctly, perform motor initial angle tuning based on the following procedures shown in Figure 7.3:

Display: Success or failure

Figure 7.3 Motor Rotation Tuning on Initial Angle flowchart

After pressing "Enter", tuning starts. First, motor rotates to a firm position, then it rotates forward (facing to driving shaft, anticlockwise rotation is forward direction) in a constant speed, rotation speed and time depends on the pole number and initial position, it stops after maximum one round rotation, then it rotates to one position and remains for 2 s again, motor stops and indicates success. The whole tuning procedure lasts less than 20s.

After tuning successful, perform a test run according to chapter 4 "4.4 Parameter commissioning in Digital Operator". Make traction machine accelerate forward from zero speed to rated speed, run it in constant speed for a while and observe the running condition; make motor run in opposite direction in same way.

After test run with digital operator, please remove the short circuit on "running contactor output" and "brake control output". Press jog up button on control cabinet to perform inspection running, observe motor running condition; Then press jog down button on control cabinet to perform inspection running, observe motor running condition.

When jog up (down), if the real running direction of cabin is down (up), please set F6-03 to correct it. 0: anticlockwise rotation is down, 1: anticlockwise rotation is up, set based on actual site condition.

After the above test running is finished, attach the steel rope and run motor with load.

7.6.2.2 Static Tuning

For this tuning method, tuning can be carried out with steel rope attached, but please make sure the following procedures are finished correctly before tuning:

- 1. Wiring in control cabinet is completely correct, and system under inspection state;
- 2. Running parameter (F1), motor parameter (F5) and encoder parameter (F8) are set correctly;
- **3.** All mechanical faults in hoistway have been eliminated; cabin and counterweight locate at center of the hoistway.

Set tuning method parameter FX-20 to "1" on digital operator (0: rotation tuning, 1: static tuning), perform motor initial angle tuning based on the following procedures shown in Figure 7.4:

Display: Success or failure

Figure 7.4 Motor Static Tuning on initial Angle flowchart

Chapter 7: Commissioning

After pressing "Enter", tuning starts. When digital operator indicates "running", press jog up or down button, contactor KDY closes, motor will vibrate a little and give a noise, the duration depends on motor rated power and rated current, but no longer than 5s, this is static tuning period. (Make sure jog up or down button is pressed constantly, DO NOT release the button during this period.)Motor will then start and run in inspection speed, jog up or down, until digital operator indicates success, this is test running period. Finally, release the jog up or down button and finish the tuning procedure.

Please note the following items at motor static tuning:

- 1. To ensure safety, during tuning process, people is strictly forbidden to stay in car or hoistway;
- 2. Press up or down jogging button can base on the current cabin position;
- 3. The whole tuning procedures can be divided into two steps: static tuning and motor test run, make sure there is no gap between two steps. If no fault happens, before digital operator indicates success, press the jog up or down button constantly;
- **4.** To achieve optimal control effect, it is recommended to repeat above tuning procedures 5 times, if the deflection of the results is small, take the average value.

If fault occurs in tuning, please refer to chapter 8 troubleshooting table, locate the fault and solve it accordingly, then repeat tuning procedures.

7.7. Inspection Running

7.7.1. Inspection Running in Machine Room

- 1. Things to check before inspection running in machine room.
 - Inspection switch in control cabinet is at "inspection" position, inspection switch on car top and cabin should be in "normal" position.
 - (2) Safety circuit and door interlock circuit are normal, DO NOT short circuit door interlock.
 - (3) After power on, KJT emergency stop contactor in control cabinet, KMB door interlock contactor, KMC power contactor are closed, check if the controller is normal and parameter setting is correct, in LCD indicator, elevator state is "INSP".
 - (4) Connect the brake to control cabinet properly.
- 2. Inspection running in machine room

When the conditions for inspection running in machine room are satisfied, press the Jog Up/Down button on the control cabinet, elevator will run up/down in set inspection speed.

For integrated controller with ARD function, the inspection switch is called "Emergency Run Mode Switch"

7.7.2. Inspection Running on Car Top/Cabin

If inspection running in machine room is normal, then can perform inspection running on car top and cabin. If the up or down direction of the buttons are opposite with the actual running direction, please inspect the jog buttons' wiring, do not change the wiring in control cabinet.
7.8. Hoistway Learning

Hoistway parameter self-learning means elevator runs at a self-learning speed and measures every floor height and record the position of every switch in the hoistway. As the floor position is the foundation for elevator normal running, braking and floor display. Therefore, before normal running, hoistway parameter self-learning must be performed. Before hoistway parameter self-learning, inspection running in full trip must be performed too; elevator must be able to run normally from bottom limit to top limit.

Hoistway parameter self-learning procedure is as follows:

- 1. Make sure elevator meets the conditions for safety running;
- 2. Make sure all the switches in hoistway are installed and connected correctly, traveling cable and hoistway cable are connected correctly, and finish setting the HOP/display address;
- 3. Elevator in inspection mode, jog elevator down to the bottom limit (bottom limit is valid);
- **4.** Enter elevator hoistway self-learning menu through digital operator, follow the learning procedures shown below in Figure 7.4

Figure 7.4 Hoistway Parameter Self-Learning Procedures

- **1.** The results of learning can be seen from hoistway position parameter U00-U69 under monitor menu with unit of meter, please check the switches position after hoistway learning.
- **2.** In self-learning process, if control system detects any abnormal phenomenon, self-learning will be terminated and give fault code, please refer to troubleshooting table in chapter 8, find out the reason and solve it accordingly, then start hoistway parameter self-learning again.

When self-learning process stops, only when LCD indicator shows "success" on digital operator, self-learning is completed successfully.

7.9. Normal Speed Running

After hoistway parameter self-learning is completed successfully, normal speed running can be carried out. Procedure as follows:

- 1. Switch elevator to attendant mode (Manual)
- 2. In floor selection parameter D0 through digital operator, target floor can be set (details refer to chapter 4.5 Commissioning Parameters Setup). Then it is possible to perform single floor traveling, double floor traveling, multi-floor traveling and full trip traveling test. Through D1 parameter interface, input door open and close instruction to control the door.

- 3. Make sure elevator can start, accelerate, decelerate and leveling normally in normal speed running.
- 4. If running is abnormal, please check for parameters setting.

7.10. Elevator Comfort Level Adjustment

If comfort level and leveling accuracy of elevator running are not perfect, please follow procedures blow. First, check the mechanical system condition (Such as clearance of guide shoes, lubricating, steel rope, position of the rope hitch plate and else.)which might influence the comfort of elevator running. After checking all the mechanical parts, then do adjustment in controller.

As the controller control the motor running according to the given starting/braking speed curve, therefore shape of the given speed curve, motor feedback speed to controller and the timing logic of controller signals directly influence the comfort level of elevator running.

7.10.1. Adjustment for Start/Brake speed curve

Speed p2 62 hl Time Direction Brake release Speed given tq t s tĸ t1 td t 2 tr tq_acceleration time at starting direction forming time t1 t 2 direction keeping time t d deceleration time at braking t one cycle of running t_k advanced time for brake release ts runing time at constant speed

Elevator running speed curve is shown below in Figure 7.5.

Figure 7.5 Elevator Running Speed Curve

1. Three parameters adjustment for motor starting S curve:

- P1: Acceleration increase in starting section, it means the rate of elevator acceleration change. Smaller value means the slower starting section, the smoother running period and the lower the efficiency. On the other hand, faster at acceleration starting section means higher efficiency for elevator running.
- 2) b1: Acceleration in starting section, it means the rate of elevator speed change. Smaller value means the slower starting section, the smoother running period and the lower efficiency. On the other hand, faster at acceleration section means higher efficiency for elevator running.
- P2: Acceleration decrease at end of starting section, it means the rate of elevator acceleration change.
 Smaller value means slower at end of starting section, the smoother running period and the lower efficiency.
 On the other hand, faster at acceleration ending section means higher efficiency for elevator running.

2. Three parameters adjustment for motor braking S curve:

- P3: Deceleration increase at start of braking section, it means the rate of deceleration change, smaller value means slower at start of braking section is, smoother running period and lower efficiency. On the other hand, faster at brake starting section means higher efficiency for elevator running.
- 2) b2: Deceleration in braking section, it means the rate of elevator speed change. Smaller value means the slower braking section, the smoother running period and the lower efficiency. On the other hand, faster at braking section means higher efficiency for elevator running.
- 3) P4: Deceleration decrease at end of braking section, it means the rate of deceleration change. Smaller value means slower at end of braking section, smoother running period and the lower efficiency. On the other hand, faster at brake ending section means higher efficiency for elevator running.

Commissioning at jobsite need to first guarantee the elevator running efficiency, then adjust the above 6 parameters to achieve optimal elevator running curve.

7.10.2. Follow & Adjust Running Curve

To achieve the maximum level of comfort, integrated controller must control the motor and make feedback speed strictly following the change of running curve.

As the controller establishes the mathematic motor module based on the motor parameters input by the customers, and controller perform decoupling control by this module on motor starting/braking. Therefore, customer should input the motor parameters correctly. (When motor parameter is not precise or not confirmed, we suggest customer perform motor parameter tuning.)

Proportional gain on the speed circle **F6-04** and integral gain **F6-05** or **F7-05~F7-12** for PI section parameters also influence the motor tracking ability to speed curve. Generally, increasing the proportion gain will improve the reaction of the system and promote the tracking speed. However, if proportion gain is set too big, it will cause system vibration with high frequency and large motor noise. Increasing integral gain can improve the system anti-interference/tracking ability and improve the leveling precision, but set integral gain too big will make system vibration, speed over adjustment and wave vibration.

Generally, it is recommended to first adjust the proportion gain, increase it right before system vibration threshold. Then adjust the integral gain, enable system with quick reaction and no over adjustment.

If system performance is not perfect at start or stop period (low speed period), try to control in multi-section PI, detail can be seen in 6.19.2 in section six.

7.10.3. Control Timing Adjustment

The control timing of this system can be seen in **Chapter 6.3**, customer can adjust timing parameters and zero speed setting.

- 1. Timing adjustment: Refer to Chapter 6.3 Timing diagram under different state
- 2. Zero speed setting: This parameter is the threshold of zero speed. Main control board determines braking time by this value. If this value is too big, elevator will stop with speed, if too small it will delay door open after elevator stop.

Generally, for asynchronous motor, it is 5 RPM, for synchronous motor, it is 1RPM.

7.11. Leveling Precision Adjustment

Leveling precision adjustment should be performed after comfort level adjustment is satisfied.

7.11.1. Basic Conditions for Elevator Leveling

- 1. Make sure the leveling switches and leveling inductor plates are installed in the right position.
- 2. Leveling inductor plates length on every floor must be same.
- 3. Leveling inductor plates must be installed vertically.
- **4.** The position of leveling inductor plates should be precise. When elevator is at the leveling position, the center of the plate and center of two inductors should match together (refer to appendix), otherwise elevator leveling will have deflection, which means in up or down running, elevator stops higher or lower than leveling position.
- **5.** If magnetic inductors are adopted, please make sure the inductor plates inserting to the inductor sufficiently, otherwise it will influence the reaction time of inductor, in that way elevator will overruns the leveling position.
- 6. To ensure precise leveling, system require elevator to crawl for a certain distance before stop.
- 7. In practice, first make adjustment for a middle floor, until leveling is precise. Then, adjust the other floors on the base of these parameters.

After adjusting curve selection, ratio and integral gain in the above context, please make sure every time elevator runs up or down, when stop at middle floor, its leveling positions are the same(or deflection $\leq \pm 2^{\sim}$ 3mm every time).

7.11.2. Leveling Parameter Adjustment

If elevator still cannot achieve desired leveling condition with adjustment based on instructions in chapter 7.9.1, further adjustments can be done by parameters. After elevator stops in normal running, if running speed curve has no problem (for example, no sudden stop or overrun beyond leveling zone), if elevator overruns the leveling position (it stops higher in up-running, lower in down-running), please decrease leveling adjustment parameter F1-17

(default: 50) . if elevator cannot reach the leveling position(it stops lower in up running, higher in down running), increase leveling adjustment parameter F1-17, generally the range of this parameter is 40~60, if the adjustment is too big, please adjust driving parameter PI, or the shape of speed curve (F1-10~F1-15).

7.12. Terminal Switch Position

Top and bottom terminal switch signal is used for elevator force deceleration and floor position calibration, it should be installed in the position where it is triggered when elevator is 2.5m ahead of top (bottom) leveling position (for **1.6m/s lift**). Testing method is as follows:

- 1. Switch elevator to inspection mode.
- 2. Set the inspection speed to 0.3m/s, jog run up (down).
- 3. Stop elevator when top (bottom) switch is triggered.
- 4. Distance between car sill and landing door sill should be 2.5±0.1m.

For the positions of terminal switches under other speed elevator, please refer to the appendix.

Chapter 8 Troubleshooting

This chapter explains in detail the fault display of integrated controller, the reasons behind and possible solution. The fault display on integrated controller may come from elevator system errors, Hoistway learning errors, driver errors, motor parameters setting and Encoder phasing errors.

8.1. Elevator System Faults

Table 8.1 Elevator System Fault List

Error Code	Definition	Possible Solution
Er2	Door inter-lock faults: Door inter-lock circuit open at elevator running	Check the work condition of door vane and door interlock circuit. Roller should have enough space at both side of the vane.
Er3	Driver faults	Based on error code, check details in table 8.3
Er4	Elevator running in opposite direction with command	 Exchange phase "V" and "W" on motor Exchange phase "A" and "B", on encoder terminal block or change in parameter setup.
Er5	System does not receive brake open feedback signal after output brake open command: 1. No X17/X15 feedback after Y6 output 0.5/2s. 2. X17/X15 enable when Y6 has no output.	 Check the traction machine brake detection switch and wiring; If no feedback switch, should set feedback enable to OFF
Er6	During elevator running, leveling zone input signal X9, X10 is always on.	Check leveling zone signal circuit and induction switch
Er7	Inverter pulse not enough at elevator running.	Check the wiring from encoder to controller.
Er9	Contactor KDY output not matching feedback signal: 1. After Y9 output X16 no feedback in 0.4s. 2. X16 is enable when Y9 has no output.	Check the contactor KDY coil and output/feedback circuit wiring.
Er10	Safety circuit open, input X13, X29 is invalid.	Check all safety circuits.
Er11	Leveling switch signal missing: Elevator is running pass the floor, but there is not input at X9 /X10.	Check the leveling switches and its wiring.
Er12	Elevator pass top limit switch (X5 is invalid)	Check the encoder, top limit switch including its position and wiring.
Er13	Elevator pass bottom limit switch (X6 is invalid)	Check the encoder, bottom limit switch including its position and wiring.
Er14	Floor counter error from encoder deviation accumulation: after this error, elevator will return to bottom floor in inspection speed for recalibration.	 Check encoder wiring and related circuits; Check the leveling switch and related circuits; Possible reason: traction rope slip /door drive shake at start.
Er17	No drive output after running command.	Check parameters in controller or contact supplier.
Er18	Floor number error: after this error, elevator will return to bottom floor in inspection speed for recalibration.	Possible due to sudden power drop & elevator slip. Check the encoder and its wiring.

Table 8.1 Elevator System Fault List (Cont'd)

Error Code	Definition	Possible Solution
Er19	The deceleration distance for target floor is not enough, elevator did not perform hoistway parameter learning after changing terminal	 Decrease "Least Speed" in user menu; Do hoistway parameter learning again.
Er20	When elevator reaches top/bottom floor and get deceleration instruction, but elevator doesn't slow down; elevator did not perform hoistway	 Check the braking resistor specification Increase controller PI gain parameters. Make elevator running curve more smooth.
Er21	Single running time is over set time	 Check the traction rope for slip or car jam. Check related parameters in drive; Check value of parameter "Over Time".
Er22	Elevator has inspection signal input (X10 invalid) at elevator normal running.	Check inspection switch and related circuits.
Er23	One of two leveling switch (X9, X10) is invalid at elevator normal running.	Check leveling switches and wirings.
Er25	Heat sensor protection: Braking resistor or motor is over heat (X21 invalid).	Check heat sensor circuit. If this error cannot reset in 90s, Y10 relay on controller will output KMC contactor
Er26	Door inter-Lock contactor working state does not match to its coil (X14, X30 input different)	Check door interlock contactor terminal & coil and their related terminal on controller.
Er27	Emergency stop contactor working state does not match its coil state. (X13, X29 input different)	Check emergency stop contactor terminal & coil and their related terminal on controller.
Er28	Top/bottom terminal (1st or 2nd) switch fault. (X7 or X8 valid when elevator outside their floor)	Check for terminal switches location and their wirings.
Er29	Communication interference too much (In system or in duplex communication).	 Check system ground condition. Check COP/LOP for possible damage that may influence CAN BUS communication.
Er30	Door open fault (car cannot open door)	 Run elevator in inspection mode, give door open command and check Y4 for output signal. If Y4 has no output, need to check door open, close limit switch and related signal.
Er31	Door close fault (car cannot close door)	Normally due to door not installed properly and short circuit door interlock circuit. Check if door close and door interlock circuit are output at same time.
Er32	Floor number counting error.	A sudden power break may affect terminal/limit switches and cause floor number error. Elevator will then return to bottom floor for recalibration.
Er33	Motor star short circuited contactor fault	KDY fault: KDY command not match feedback signal: 1. Y8 output, X11 has no feedback in 0.4s 2. Y8 has not output, X11 is valid

8.2. Hoistway Parameter Self-Learning Faults

Error Code	Definition	Possible Solution
LER=0	System running error	Press "ESC" to exit learning, check fault record shown in table 8.1
LER=1	Pulse input phase reverse	Exchange phase A and phase B in encoder.
LER=2	Bottom terminal 1 switch input repeat.	Bottom terminal 1 switch installation error, causing multiple terminal switch input or bottom terminal 1 switch signal shake. Check related switches.
LER=3	Bottom terminal 1 switch signal lost (elevator >2.0m/s)	Bottom terminal 2 switch enable before bottom terminal 1 switch or bottom terminal 1 switch signal lost. Check related switches.
LER=4	Bottom terminal 2 switch signal repeat. (elevator >2.0m/s)	Bottom terminal 2 switch installation error, causing multiple terminal switch input or bottom terminal 2 switch signal shake. Check related switches.
LER=5	Bottom terminal 2 switch signal lost (elevator >2.0m/s)	Top terminal 2 switch enable before bottom terminal 2 switch or bottom terminal 2 switch signal lost.
LER=6	Top terminal 2 switch signal repeat. (elevator >2.0m/s)	Top terminal 2 switch installation error, causing multiple terminal switch input or top terminal 2 switch signal shake. Check related switches.
LER=8	Top terminal 2 switch signal lost (elevator >2.0m/s)	Top terminal 1 switch enable before top terminal 2 switch or top terminal 2 switch signal lost.
LER=9	Bottom terminal 1 switch signal lost	Top terminal 1 switch enable before bottom terminal 1 switch or bottom terminal 1 switch signal lost.
LER=10	Top terminal 1 switch signal repeat	Top terminal 1 switch installation error, causing multiple terminal switch input or top terminal 1 switch signal shake. Check related switches.
LER=11	Top terminal 1 switch signal lost	Top limit switch enable before top terminal 1 switch or top terminal 1 switch signal lost.
LER=12	Total floor setting error	Check total floor number match actual floor number. Check leveling inductor plates on every floor.
LER=14	Two leveling inductors cannot trigger together	Leveling inductor plate on this floor cannot cover both inductors or missing one leveling inductors.
LER=15	Press "ESC" in the middle of hoistway parameter learning process.	Cancel the learning by pressing "ESC".
LER=17	Up/Down leveling switch enable at same time	Wiring of two switches is parallel connection by mistake, or bottom limit switch is installed close to 1st floor leveling position.
LER=18	Hoistway data saving error	▲ Please contact supplier at once.
LER=19	Both leveling switch signal enable together when arrive at top limit switch.	Move up top limit switch.
LER=20	Bottom limit switch too high	Lower the bottom limit switch.
LER=21	When elevator reaches top limit switch, bottom terminal 1/2 switch is valid.	Check the switches position and their wirings.
LER=22	When elevator start from bottom limit switch, top terminal 1/2 switch is valid.	Check the switches position and their wirings.

Table 8.2 Hoistway Parameter Self-Learning Fault List

Note: System has 2 top and 2 bottom terminal switches for elevator speed >2.0m/s

8.3. Driver Faults

Table 8.3 Driver Fault List

Error Code	Display	Definition	Possible Causes	Possible Solution
DF1	UV	DC bus under voltage (for 400V drive, 380V at UV protection)	 Phase lost on input supply; Instantaneous power lost; Excessive input voltage fluctuation; Loose terminals at input. 	 Check input power supply; Check input power cable terminals.
DF2	ov	DC bus over voltage (for 400V drive, 760V at OV protection)	 Too short deceleration time, Excessive motor regenerated energy; Supply voltage too high No connection to braking resistor. 	 Increase deceleration time; Connect brake resistor; Check power supply.
DF3	ОН	Heat sink overheated	 Excessively ambient temperature; Damaged cooling fan; Existence of heat source around. 	 Reduce ambient temperature; Remove heat source around; Check the fan and wiring.
DF4	IF	IPM fault	 IPM over current/short circuit; IPM over heat; Abnormal IPM control power (UV) 	 Check output short circuit; Check motor short circuit; Contact supplier.
DF5	OC	Over current	 Inverter output short circuit; Machine over-load; Accel/decel time too short. 	 Check motor short circuit; Check accel/decel time, slow down if needed.
DF6	CF	CUP faults	Too much interference.	Please contact supplier.
DF7	OS	Elevator over speed. The speed feedback exceeds the speed limit and last longer than set time.	 Max speed /last time set incorrect; Speed over-tuning; Encoder feedback incorrect. 	 Check speed limit setting; Check the P/I parameter; Check encoder
DF8	OE	speed over deviation. The speed deviation exceeds the allowable range and last longer than set time.	 System overload; Accel/decel time short; Parameter setting wrong; encoder cannot work properly. 	 reduce system load; Increase accel/decel time; Check the parameters; Check the encoder.
DF9	PGO	PG disconnect, did not receive encoder signal at operation.	 Encoder wiring break, loose or wrong connection; Encoder damaged. 	 check encoder wiring; Check encoder.
DF10	FF	Flash memory fault	Data fault at saving parameters.	Please contact supplier.
DF11	BF	Base block circuit error	 Wiring for base block at X14 is incorrect; Setting electric level for base block at X14 is incorrect 	 Check the wiring at X14; Modify the parameters.
DF12	OL	Motor overload, current output exceed 150% (200%) rated value for 60s (10s).	 System load too heavy; System power rating too low. 	 Reduce system load; Change a more suitable controller.
DF13	MC	Controller main contactor MC not close after given close command for set time.	 Wrong wiring for MC contactor; MC contactor damaged. 	Try to reset the power, if this error come again, contact supplier for replacement.
DF14	BR	Brake unit fault	 1. defective brake cable or damaged brake elements; 2. External brake resistor disconnected or not connected. 	 Check brake resistor; Replace the controller.

Error Code	Display	Definition	Possible Causes	Possible Solution
DF15	OF	Output phase lost	 Output cable break or loose terminal. Motor stator cable disconnect. 	1. Check output cable/terminal; 2. Check motor stator cable.
DF16	SCF	Output current remains at elevator stop.	Controller damaged.	Change the controller.
DF17	SRF	Elevator slip after stop	 Brake/encoder loose; Encoder interference. 	 Fasten brake/encoder; Remove interference source.
DF18	UF	Signal U of encoder wire lost	Encoder damaged or wiring incorrect.	Check encoder and wirings
DF19	VF	Signal V of encoder wire lost	Encoder damaged or wiring incorrect.	Check encoder and wirings
DF20	WF	Signal W of encoder wire lost	Encoder damaged or wiring incorrect.	Check encoder and wirings
DF21	DF	Parameter setting error	Parameter setting error	Check parameter setting
DF22	SDF	Internal programmer self check error	Internal data setting error	Please contact supplier

Table 8.3 Driver Fault List (Cont'd)

8.4. Motor Initial Angle Tuning Faults

For Incremental encoders

Table 8.4 Motor Initial Angle Rotation Tuning Fault List 1

Error Code	Definition	Possible Causes	Possible Solution
RF1	Rotation tuning error	 Motor with load; Motor phase is not correct; Encoder damage or wiring incorrect. 	 Make sure motor has no load; Correct the phase of motor; Check the encoder and wiring.
RF2	Auto tuning data error	 Motor parameter setting error; Encoder damaged or wiring incorrect; High interference. 	 Check motor parameter setting; Check encoder and its wiring; Reduce interference.
RF3	Z-phase pulse lost at tuning	 Encoder damaged; Encoder wiring is incorrect 	 Check encoder; Correct the wiring of encoder
RF4	Auto tuning result is not correct	 Motor parameter setting incorrect; Encoder and its wiring is incorrect; Auto tuning motor with loads; Speed circle P/I set too large. 	 Check motor parameter setting; Check encoder and its wiring; Make sure motor has no load; Reduce P/I parameter value.
RF5	Auto tuning UVW repeated input	The encoder UVW wire have short circuit or disconnected	Check the encoder and wiring

Error Code	Definition	Possible Causes	Possible Solution
RF6	Motor cannot rotate normally	 Motor with load; Motor phase sequence is incorrect. 	 Make sure motor has no load; Check motor phase sequence.
Others	Check controller for fault.	If drive has fault, it cannot perform auto tuning, and it will give fault code.	Check the drive is fault or not

Table 8.4 Motor Initial Angle Rotation Tuning Fault List 1 (Cont'd)

For Sine/Cosine encoders

Table 8.5 Motor Initial Angle Rotation Tuning Fault List 2

Error Code	Definition	Possible Causes	Possible Solution
RF232	Motor does not rotate at auto tuning	 Encoder connection fault; Motor has load or brake close; Motor parameter input error; Motor & controller connection error. 	 Check encoder signal connection; Motor parameter input correct; Check motor/controller connection; Make sure motor has no load & brake open.
RF233	Motor rotate in wrong direction	Motor phase sequences does not match encoder	 Adjust motor phase sequence Adjust encoder A-, A+ or B-, B+
RF234	Encoder Z pulse signal error.	 No detection of Z pulse signal; Motor/Controller connection error. 	 Check wiring for Z pulse signal; Make sure motor has no load. Check motor/controller connection.

Static Initial Angle Tuning Error Table 8.7 Motor Initial Angle Static Tuning Fault List

Error Code	Definition	Possible Causes	Possible Solution
PF235	Encoder Z pulse signal lost.	No encoder Z pulse signal detected after motor tuning for 7s.	If motor can running, check the encoder wiring; otherwise find out why motor cannot run.
PF236	Internal counting error.	Internal counting error.	 Check the parameter input Check motor/controller connection.

Error Code	Definition	Possible Causes	Possible Solution
PF237	Motor is not held still	Motor brake is not close or brake is too loose	Check motor brake.
	Tuning results error too large	After tuning 3 times, tuning results have large differences.	Check motor and encoder wiring ground condition.
PF238	Detection current is too small	Motor/Controller connection is incorrect.	Check motor/controller connection.
PF239	Tuning results have too large errors	After tuning 3 times, tuning results have large differences.	Check motor and encoder wiring ground condition, then try again.
PF240- PF249	For incremental PG tuning, UVW signal error	The encoder UVW wires have wrong sequence or disconnection.	Check the UVW wiring with encoder

Table 8.7 Motor Initial Angle Static Tuning Fault List (Cont'd)

8.5. Motor Parameters Tuning Faults

Motor parameters tuning error code and their possible causes and solution are shown below in table 8.6 and table 8.8. (Including rotation and static parameters tuning)

Motor Parameters Rotation Tuning Faults

Table 8.6 Motor Parameters Rotation Tuning Fault List

Error Code	Definition	Possible Causes	Possible Solution
PF2	Motor parameter input incorrect or no input.	 Motor parameter input error; Motor/Controller connection error. 	 Check motor parameters; Check motor/controller connection.
PF3	Motor resistor tuning result error.	 Input motor data is incorrect; Wire not secured on terminal block. 	 Check input parameters; Check the motor wiring and secured them on terminal block.
PF4	Motor leakage inductance tuning result error	 Input motor data is incorrect; Motor tuning with load. 	 Check the input parameters; Make sure motor has no load.
PF5	Motor does not rotate in auto tuning.	 Motor parameter input incorrect; Wire loose on terminal block; PG card damaged or wiring incorrect. 	 Check the input parameters; Secure the wire on terminal block; Check PG card and its wiring.
PF6	Motor cannot reach rated speed or rotate direction error.	 Input motor data incorrect; Motor input phase incorrect; Encoder /PG card /wiring error. 	 Check the input parameters; Check motor input phase; Check encoder, PG card and wiring
PF7	No-Load Current error	Auto tuning motor with loads	Make sure the motor has no load.

Motor Parameter Static Tuning Faults

Table 8.8 Motor Parameter Static Tuning Fault List

Error Code	Definition	Possible Causes	Possible Solution
PF2	Initial fault	 Motor parameters input incorrect; Motor/Controller connection error. 	 Input correct motor parameters; Check motor/controller connection.
PF3	Motor resistor tuning result error.	 Input motor data is incorrect; Wire not secured on terminal block. 	 Check input parameters; Check the motor wiring and secured them on terminal block.
PF4	Motor leakage inductance tuning result error	 Input motor data is incorrect; Motor/Controller connection error. 	 Check input parameters; Check motor/controller connection.
PF237	Motor is not held still at initial tuning period.	Motor brake is not close or brake is too loose, causing sheave move during initial tuning period	Make sure motor brake is tightly closed.
PF238	Current too small at initial tuning period.	Motor/Controller connection error.	Check motor/controller connection.

Chapter 9 Maintenance

This chapter describes precautions and notes for drive storage and maintenance.

9.1. Safety Precautions for Drive Maintenance & Storage

	A Danger
\diamond	There are high voltage terminals in integrated controller, please DO NOT TOUCH.
	Otherwise there has potential risk of electric shock.
\diamond	Make sure to install front protection cover before power on integrated controller and cut
	power before removing the front protection cover.
	Otherwise there has potential risk of electric shock.
\diamond	Before open case service/maintenance, make sure the power is cut for 10 minutes, power
	on LED (CL) is off and DC+/- bus voltage is lower than 24V.
	Otherwise there has potential risk of electric shock due to capacitor remain voltage.
\diamond	Only authorized and qualified personnel are allowed to inspect/service integrated
	controller.
	Otherwise there has potential risk of electric shock and damage the product.
\diamond	Before maintenance, technicians must remove any metal objects (watch, ring, ect), and
	must wear cloth with qualified isolation level.
	Otherwise there has potential risk of electric shock.
\diamond	DO NOT remove or change terminal ports at controller power on.
	Otherwise there has potential risk of electric shock.
\diamond	DO NOT change internal structure of the integrated controller.
	Otherwise there has potential risk of electric shock and damage the product.
\diamond	After maintenance, please make sure all terminals and contactors are tightly secured.
	Otherwise there has potential risk of controller not functioning or even get damaged.
	Δ
\diamond	CMOS integrated circuits are applied in control board, please be aware.

If touch by hand directly, the control board may get damaged due to static charge.

9.2. Daily Check

In order to increase the life time of controller and make sure the safety operation of elevator, it is necessary to check and inspect controller in a daily basis. As it is not allowed to remove the controller front cover with controller power on, the controller can checked by observing the device external condition, including:

- 1. Check if fan is working properly, including any abnormal noise.
- 2. Check if the LED indictor and digital operator of controller is working properly.
- 3. Check if there are any abnormal noise, vibration or smell.
- **4.** Check thermal condition of controller and motor.
- 5. Check the ambient environment (Temperature -10~45 $^\circ C$, humidity 5 \sim 95%RH, no frozen, no oil mist or powder in air)
- 6. Check if the comfort level of elevator has decreased dramatically.
- 7. Check if the input power and frequency are within rated range.

9.3. Routine Inspection

In order to increase the life time of controller and make sure the safety operation of elevator, it is necessary to check and inspect controller in a routine basis. At routine check, first switch elevator to inspection mode, stop elevator operation and cut system power. Then please perform inspections procedures based on table 9.1, following safety precautions and notes mentioned above.

Check Item	Definition	Possible Solution for fault		
Terminal,	Check for loose screws/bolts	Tighten the loose screws/bolts		
connector, screws	Check for loose connector	Reconnect the loose connector		
Heat sink & Wind	Check for dust or any blockage.	Use dry air gun (0.4-0.6MPa) to clean dust, use proper tools		
tunner		to remove other attached objects.		
PCBs	Check for dust, oil (conducting).	to remove other attached objects, replace PCB if necessary.		
	1. Abnormal noise & vibration			
Cooling For	2. Color/shape change due to	For 1,2: Change fan		
Cooling Fan	heat	For 3: Tighten screws.		
	3. Loose bolts, screws.			
Power device	Check for dust	Use dry air gun (0.4-0.6MPa) to clean dust or other objects.		
Capacitor Check for color, smell		Change controller or capacitor if necessary.		

Table 9.1 Routine Inspection Check List

9.4. Quick Wear parts

Controller is made from many components inside, all these parts have their lifetimes, and they depends on environment and working condition. As a result, in order to increase the life time of controller and make sure the safety operation of elevator, it is necessary to check and inspect some of these parts in a regular basis, replace them if needed. Table 9.2 below is the components change standard.

Table 9.2 Component change standard

ltem	Life time	Change method
Cooling Fan	2-3 year (20000hrs)	Change new fan
Main circuit capacitor	5 year	Change new capacitor (Decide after inspection)
Main circuit fuse	10 year	Change new fuse
Capacitors on PCB	5 year	Change new PCB (Decide after inspection)
Other components		Decide after inspection

Note: Conditions below are required in order for components to reach life time mentioned above. Ambient temperature: Average 30 $^\circ\!\!C$ around one year Load rate: Average below 80%

Running rate: Daily usage time <12 hrs.

9.5. Warranty

Integrated controller warranty period is 18 months after manufacturer (based on product name plate)

However, even within the 18-month warranty period, repair cost will be charged in the following cases:

- 1. Damage caused by miss-operation not following manual guidance
- 2. Damage due to use outside rated range
- 3. Damage due to abnormal application of the drive
- 4. Damage due to natural environment, such as fire, flood, earthquake ect.

Chapter10 Controller installation with EMC Standard

This chapter explains in detail the integrated controller installation with EMC standard for reference.

10.1. EMC Briefing

EMC (short for Electromagnetic Compatibility) refers to the device/system capability to function normally in an environment with electromagnetic interference. It has two parts: first, the device/system must be able to work normally in environment with electromagnetic interference. Then, the electromagnetic interference it generated must be within a certain level so it will not affect other devices/systems in the environment.

10.2. EMC Characteristics of Integrated Controller

Same as other electronic devices, the integrated controller is affected by electromagnetic interference and at the same time it is also a source of electromagnetic interference. In order to enable the controller work normally in an electromagnetic environment, at the same time not to affect other devices, it is specially designed to deal with EMC characteristics shown below.

- 1. Input current is non-sine wave, with high frequency, this will cause strong electromagnetic interference.
- 2. Output voltage is high frequency PWM wave, this will cause strong electromagnetic interference.
- 3. As electromagnetic receiver, if controller receive too strong interference, it may not work properly.
- 4. Reduce controller generated electromagnetic interference will increase its own EMC level.

10.3. EMC Installation Guide

As determined by operating principle, the elevator integrated controller produces certain noises during operation. The effect of noise on peripheral equipment is relevant to the noise type, transmission path as well as the design, installation, wiring and grounding of drive system.

10.3.1. Noise Control

Basic strategy for noise control is to cut the transmission channel between noise source and noise receiver. Detail solutions are shown below:

- Power cable and signal cable should be lay out separately and stay as far as possible, make sure to avoid two kind of cables stay in parallel or tied together. When meet situations in which signal cable must pass power cable, make sure two cables stay in perpendicular crossing and stay as far as possible.
- **2.** All controller signal cable must have net shield, and the shield should be grounded at the controller side, with grounding area as large as possible.
- **3.** For signal cables easy to get interference, such as encoder cable, it should have double twist shield cover, with grounding area as large as possible. One suggestion is to put the cable in metal tube or in a individual metal cable tunnel with reliable grounding condition.
- **4.** Power cable and motor cable should use power cable with armor cover or shield. Power cable should use individual metal cable tunnel with reliable grounding point at controller side. Motor cable should follow the same grounding principle and its shield should also connect to motor cover at motor side.

- 5. Power cable should be connected to inverter use RFI filter or output reactor. Motor cable should be connected with output filter (sine/cosine filter) or install output reactor. Another solution is to surround motor cable twice with ferrite magnetic circle.
- 6. Other device that are easy to get interference should be put far away from the controller and power cable.
- Inductive devices around controller such as contactor, relay, brake unit, their coil need to install surge controller (such as RC filter, resistor or freewheeling diode).

10.3.2. Wiring

1. Wiring in Control Cabinet

- Inside control cabinet, signal cable and power cable should be placed in different area, with minimum distance of 20cm. DO NOT put two kinds of cables in parallel or tied together. If must cross two cable, they must remain strictly perpendicular with each other.
- 2) The input (power) and output (motor) of power cable cannot cross or tied together, especial when the cable is connected with input/output filter.
- **3)** Inductive devices inside control cabinet (such as contactor, relay, brake unit), their coil need to install surge controller (such as RC filter, resistor or freewheeling diode).
- 4) Both signal and power cable should have net shield/armor with high frequency low impedance.
- 5) Cable shield should ground with large area.

2. Wiring at site

- 1) Power cable must have 5 wires, including U/V/W, one for ground and one for neutral, DO NOT mix use.
- 2) At site, signal cable and power cable should be placed in different area, with minimum distance of 20cm. DO NOT put two kinds of cables in parallel or tied together. If must cross two cable, they must remain strictly perpendicular with each other.
- 3) Signal cables must have net shield, the shield should be grounded at controller side with large ground area.
- 4) Power cable and motor cable should use power cable with armor cover or shield. Power cable should use individual metal cable tunnel with reliable grounding point at controller side. Motor cable should follow the same grounding principle and its shield should also connect to motor cover at motor side.

10.3.3. Ground Connection

Controller must be connected to the ground at work, grounding helps to solve the EMC issue, at the same time it brings safety to the device and people. Ground correctly is the most important (and most reliable/economic) solution to EMC issue, and it should be considered first. Notes for ground connections are shown below:

- 1. Control cabinet must have GND public terminal (copper plate).
- The case of control cabinet must be connected to the ground public terminal. This connection can be made between cabin door and ground public terminal copper plate (width >15mm).
- 3. All ground connection must remain complete on both sides, cannot connect two grounding wire in the middle.
- 4. The ground of integrated controller must be connected to the ground public terminal.

- **5.** Power cable, motor cable and brake resistor cable (if necessary) shield/armor must be connected to the ground public terminal.
- 6. The distance from cable shield to ground public terminal should be <50mm.
- 7. Ground connection wire should have low impedance (large cross sectional area and short in length).
- **8.** Power cable should have 5 core (U,V,W, neutral & ground) with shield, motor cable should have 4 core (U, V, W, ground) with shield. For motor cable ground wire, one terminal should be grounded at controller side, another terminal should be grounded at motor side.

10.3.4. Leakage Current

Leakage current happens between wire and to ground, it depends on wire capacitance and controller carrier frequency. Leakage between wire is related to wire capacitance between controller input (power cable) and output (motor cable), controller carrier frequency, motor/power cable cross sectional area and length, while leakage current to ground is located at ground public terminal, it will get into the system and (in some case) affect other electrical devices through ground connection.

Countermeasure for leakage current:

- 1. Reduce controller carrier frequency;
- 2. Keep the power and motor cable as short as possible;
- 3. Power and motor cable cross sectional area should not be too big;
- For long motor cable (>50m), controller output should have filter or reactor;
- 5. Should equip inverter use leakage current circuit break.

10.3.5. Power Line Filter

The power line filter is two-way low pass filter which only permits flowing of DC current or 50HZ operating frequency AC current but stops flowing of higher frequency electromagnetic interference current. Therefore, it can not only inhibit the equipment's electromagnetic interferences flowing into power line but also inhibit the noises in power line flowing into equipment.

Precautions for Installation of Power Line Filter:

- **1.** In the cabinet, the filter should be located close to the power line inlet as practicably as possible. Additionally, the filter supply line section left in the control cabinet must be as short as possible.
- The power line filter should be grounded with reliable connection, and the grounding area should be as large as possible.
- **3.** The power line filter metal case should be securely attached to the control cabinet plate, with contacting area as large as possible and ensure good electrical connection.
- 4. Please use power line filter that matches the system, such as inverter use power line RFI filter.

10.4. EMC standard satisfied by Integrated Controller

When install integrated controller and EMI filter, if the installation procedures are following EMC installation guide, then the system could meet the standards below:

EN61000-6-4: EMC test in Industrial Environment 1800-3.

- EN61800-3: EMC Standard (2nd Level Environment)
- EN61000-6-3: EMC Standard (Residential Environment)
- EN61000-6-4: EMC Standard (Industrial Environment)

Chapter 11 Accessories

11.1. Elevator Parallel Connection Extension Board (BL2000-EBA)

11.1.1. Function

BL2000-EBA is used to extend the input/output function of Parallel integrated controller BL3-B. J1 is used for extension input (to integrated controller), J2 is used for extension output (to next extension board); J3, J4 are used for input; I1-I12 LED is the display of I1-I12 input signal; J5, J6 are used for output; L1-L12 LED correspond to L1-L12 output signal (output relay) display.

11.1.2. Terminal Definition & Specification

Table 11.1 Terminal J3 input signal I1-I10 Definition (assume main board only have 5/6 floor output in full/single collective control)

Terminal		Definition (Input)				
Number	Location	VVVF	2 Speed			
11	J3-1	Full/Single Collective: Car Call 6/7	Full/Single Collective: Car Call 10/13			
12	J3-2	Full/Single Collective: Car Call 7/8	Full/Single Collective: Car Call 11/8			
13	J3-3	Full/Single Collective: Car Call 8/9	Full/Single Collective: Car Call 12/9			
14	J3-4	Full/Single Collective: Car Call 9/10	Full/Single Collective: Car call 13/10			
15	J3-5	Full/Single Collective: up call 5/car call 11	Full/Single Collective: up call 9/car call 11			
16	J3-6	Full/Single Collective: up call 6/car call 12	Full/Single Collective: up call 10/car call 12			
17	J3-7	Full/Single Collective: up call 7/ car call 13	Full/Single Collective: up call 11/car call 13			
18	J3-8	Full/Single Collective: up call 8/ Hall call 8	Full/Single Collective: up call 12/ hall call 8			
19	J3-9	Full/Single Collective: down call 6/ Hall call 9	Full/Single Collective: down call 10/ hall call 9			
110	J3-10	Full/Single Collective: down call 7/ Hall call 10	Full/Single Collective: down call 11/hall call 10			

Table 11.2 Terminal J4 input signal I11-I12 Definition (assume main board only have 5/6 floor output in full/single collective control)

Terminal	Location	Definition (Input)				
Number		VVVF	2 Speed			
I11	J4-1	Full/Single Collective: down call 8/ hall call 11	Full/Single Collective: down call 12/ hall call 11			
I12	J4-2	Full/Single Collective: down call 9/ hall call 12	Full/Single Collective: down call 13/hall call 12			
	J4-3	NO	T USED			
	J4-4	NO	T USED			
	J4-5	NOT USED				

Table 11.3 Terminal J5 Output signal L1-L10 Definition (assume main board only have 5/6 floor output in full/single collective control)

Terminal	Location	Definition (Output)			
Number	Location	VVVF	2 Speed		
L1	J5-1	Full/Single Collective: Car Call 6/7	Full/Single Collective: Car Call 10/13		
L2	J5-2	Full/Single Collective: Car Call 7/8	Full/Single Collective: Car Call 11/8		
L3	J5-3	Full/Single Collective: Car Call 8/9	Full/Single Collective: Car Call 12/9		
L4	J5-4	Full/Single Collective: Car Call 9/10	Full/Single Collective: Car call 13/10		
L5	J5-5	Full/Single Collective: up call 5/car call 11	Full/Single Collective: up call 9/car call 11		
L6	J5-6	Full/Single Collective: up call 6/car call 12	Full/Single Collective: up call 10/car call 12		
L7	J5-7	Full/Single Collective: up call 7/ car call 13	Full/Single Collective: up call 11/car call 13		
L8	J5-8	Full/Single Collective: up call 8/ Hall call 8	Full/Single Collective: up call 12/ hall call 8		
L9	J5-9	Full/Single Collective: down call 6/ Hall call 9	Full/Single Collective: down call 10/ hall call 9		
L10	J5-10	Full/Single Collective: down call 7/ Hall call 10	Full/Single Collective: down call 11/hall call 10		

Table 11.2 Terminal J6 Output signal L11-L12 Definition (assume main board only have 5/6 floor output in full/single collective control)

Terminal	Location	Definition (Output)				
Number		VVVF	2 Speed			
L11	J6-1	Full/Single Collective: down call 8/ hall call 11	Full/Single Collective: down call 12/ hall call 11			
L12	J6-2	Full/Single Collective: down call 9/ hall call 12	Full/Single Collective: down call 13/hall call 12			
	J6-3	COM public terminal				
	J6-4	COM public terminal				
	J6-5	COM public terminal				

11.2. Elevator Group Control Board BL2000-QKB-V1

11.2.1 Function

- Group control system is combined with one group control board "BL2000-QKB-V1" and several integrated controllers in every elevator in the group. Group controller collect hall call, car call and status information of every elevator through CAN BUS, process them, and deliver distribution orders to every elevator. In this way the group control for up 8 elevators & 64 floors is achieved.
- 2. Four Running Modes
 - Up peak mode: At set time, all elevators answer landing call with up call from base floor has highest priority.
 - Down peak mode: At set time, one elevator answer up call with priority; other elevators answer down call (one elevator on each area) with priority to minimize the down call reaction time.
 - Balance mode: Landing call distribution is optimized according to shortest time response principle.
 - Spare mode: 3 minutes at the balance mode without landing/car call, elevator will wait for the order from the first floor on each area so that it can response to hall car as soon as possible.

When elevator is at status of fault, attendant, inspection, parking, fire and special use mode, it will be excluded from the group control. Please follow the relevant chapter in this user guide for individual elevator operation in group control mode.

11.2.2 Application

- 1. Group Control from 3 to 8 elevators;
- 2. Elevator speed 0.5-4m/s;
- 3. Can be used up to 64 floors;
- 4. Applies to passenger and residential elevator.

11.2.3 Terminal Specification

5. J1 Multiple Wire Socket DK5EHDRC-10P; Rated Voltage: 300V, Rated Current: 15A, Max Voltage: 4KV, Leg: 5mm.

- 6. J2 Connector 2.54/3P
- 7. J3 Twin housing 2.54/10P
- 8. J4 Connector 2.54/5P
- 9. J5 Single shield plug-in 3.96/4P

11.2.4 Interface Circuit

Figure 11.21 Group Control Board BL2000-QKB-V1 Interface Circuit

11.2.5 Terminal Definition & Specification

Table 11.6 Group Control Board BL2000-QKB-V1 Terminal Definition & Specification List

					Technical Specification		
Name	Terminal Loc	Location	Definition	Usage	Interface	Dotod Lood	May Speed
					Туре	Rated Load	wax speed
	GND3	J1-1	0V				
		J1-2					
	GND3	J1-3	0V	tion			
	5V IN	J1-4	5V Input	nicat		200mA	
14		J1-5		nmu			
11	TXA+	J1-6	Group Control	t Cor			
	TXA-	J1-7	Communication	ver 8			
	GND3	J1-8	0V	Ром			
		J1-9	Spare CAN Comm. TXA+				
		J1-10	Spare CAN Comm. TXA-				
	DA+	J2-1		RS485			
J2	DA-	J2-2					
	GND	J2-3					
J3			Programmin	g Interface			
	ТХ	J4-1	Communication Send	RS323			
14	RX	J4-2	Communication Receive				
54	IN	J4-3	Control Input				
	OUT	J4-4	Control Output				
	TXA+	J5-1	Group Communication				
15	TXA-	J5-2	Group communication				
	GND3	J5-3	0V				
		J5-4					

Appendix 1 Hoistway Switches Information (partly)

F1.1. Leveling Switches & Flag Installation

For elevator leveling control, two leveling switches (up/down leveling switches) and some door zone flags (one in each floor) are required. Two leveling switches are installed on top of car, door zone flag is installed in hoistway, their dimensions and positions are illustrated in figure F1.1. Leveling switches can be optical or magnetic.

Door zone flag adjustment:

- **1.** Elevator stop at each floor, measure car and hall sills difference \triangle S on each level at elevator park (car sills higher is position, lower is negative)
- Adjust door zone flag on each floor, if △S>0, flag on this floor should move down △S; move flag up △S if △ S<0.
- Elevator need to redo the hoistway parameter learning after door zone flag adjustment.
- Check elevator leveling on each floor, redo part 1-3 if

necessary.

Figure F1.1 Door zone flag & Leveling Switch Position

F1.1. Up/Down Terminal Switches Installation

- 1. Terminal switches are recommended to use non-contact type, such as magnetic switch.
- **2.** Up/Down terminal switches are installed in hoistway guide rail; terminal flag is installed on top of car. Their positions are shown blow in figure F1.2 & F1.3.
- For elevator speed ≤1.75m/s, only one up and one down terminal switch and one terminal flag is required. For elevator speed ≥2.0m/s, more terminal switches should be installed for safety purpose. Please see below table F1.1 for up/down terminal switches position with different elevator speed.

Table F1.1 Up/Down Terminal Switches with different elevator speed

Sneed	Terminal Switch Location						
Terminal	0.5m/s	1.0m/s	1.6m/s	2.0m/s	2.5m/s	4.0m/s	
	0.51175		1.75m/s				
Up/Down Terminal	1		2.5	2.5	2.5	2.5	
Switch 1	TIII	1m 1.3m 2.5m 2.5m		2.5111	2.5111 2.5111		
Up/Down Terminal				4.00	()[m/4m)	9 m	
Switch 2			4111		0.2511(4111)	0111	
Up/Down Terminal							
Switch 3							

F1.2. Confirm the Terminal Switches Location

Up/down terminal switches signal is used for elevator force change speed and floor position calibration, they should be installed 2.5m from car top/bottom to top/bottom floor leveling position. (For elevator speed at 1.6m/s or 1.75m/s). To confirm such position:

- 1. Make sure elevator in inspection mode;
- 2. Set inspection speed to 0.3m/s , run up/down elevator;
- 3. Stop elevator when touching up/down terminal switches;
- 4. At this time the car sills and hall sills should have a distance of 2.5±0.1m.

Appendix 2 Parameters List

Parameter	Name	Default Value	Set Value
U0-00	Lower Limit	0	
U0-01	Upper Limit	0	
U0-02	Lower Slowdown 1	0	
U0-03	U0-03 -		
U0-04	Upper Slowdown 1	0	
U0-05	-	0	
U0-06	Floor Data 1	0	
U0-07	Floor Data 2	0	
U0-08~68	Floor Data 3~63	0	
U0-69	Floor Data 64	0	
U1-00	Input Data		
U1-01	Input Bin		
U1-02	Input App		
U2-00	Output Data		
U3-00	Car Input Data		
U4-00	Run Times	0	
U4-01	Run Hours	0	
U4-04	CAN1SendAPP		
U4-05	CAN1ReceiveAPP		
U4-06	Interfer Apprais		
U4-07	Encoder Apprais		
U4-09	Loading Data		
U5-00	Ctrsoftware NO		
U5-01	DriveCodeVer		
U5-02	CpldEdition		
U6-00	Power		
U6-01	Ref Speed		
U6-02	Feedback Speed		
U6-03	Load		
U6-04	DC Voltage		
U6-05	Output current		
U6-06	temperature		
U6-07	Output torque		
F0-00	Total floor	6	
F0-01	Homing Floor	1	
F0-02	Fire floor	1	
F0-03	Parking floor	1	
F0-04	Display Code	0	
F0-05	1 st floor indicator setting	1	

Table F2.1 Controller Parameters & Factory Setting List

Table F2.1 Controller Parameters & Factory Setting List (Cont'd)
--

Parameter	er Name Default Value		Set Value
F0-xx	Xxth floor indicator setting	1~63	
F0-68	F0-68 64 th floor indicator setting		
F1-00	Car speed	1.60m/s	
F1-01	Motor speed	1450r	
F1-03	Insp speed	0.3m/s	
F1-04	Start speed	0m/s	
F1-05	Leveling Speed	0.3m/s	
F1-06	Least Speed	0.96m/s	
F1-07	Open Door Speed	0.25m/s	
F1-08	Relevelst Speed	0.30m/s	
F1-09	Relvelrun speed	0.05m/s	
F1-10	Acceleration B1	0.7m/s ²	
F1-11	Deceleration B2	0.7 m/s ²	
F1-12	S Curve P1	0.6 m/s ³	
F1-13	S Curve P2	0.6 m/s ³	
F1-14	S Curve P3	0.6 m/s ³	
F1-15	S Curve P4	0.6 m/s ³	
F1-16	Zero Speed	1RPM	
F1-17	Leveling Adj	50mm	
F1-18	Load Adj	0	
F1-21	Drive mode	0	
F1-22	Two Door Mode	0	
F1-23	Fire Mode	0	
F1-24	Parallel No.	0	
F1-25	Twins Control	0	
F1-26	Group Control	0	
F1-27	Far monitor	0	
F1-28	Auto Parking	0	
F1-29	Load Enable	0	
F1-30	Open Delay Time	0	
F1-31	Brake Feedback	0	
F1-32	Solution Ladder Password	0	
F2-00	Brake ON Time	0.5s	
F2-01	Brake OFF Time	0.5s	
F2-02	Insp Brake Time	0.5s	
F2-04	Zero Time	0.3ms	
F2-05	Open Door time	3s	
F2-06	Open Delay Time	60s	
F2-07	Homing Time	60s	
F2-08	Door Run Timse	5s	

Parameter	Name	Default Value	Set Value
F2-09	Beep Delay Time	0.15s	
F2-10	Enable Delay	Os	
F2-11	Lamp Off Time	15min	
F2-12	Over Time	45s	
F2-13	Smooth Start Time	0	
F2-14	Start Time/Hour	00	
F2-15	Start Time/Minute	00	
F2-16	Stop Time/Hour	00	
F2-17	Stop Time/Minute	00	
F2-18	Start Time 1/Hour		
F2-19	Start Time 1/Minute		
F2-20	Stop Time 1/Hour		
F2-21	Stop Time 1/Minute		
F3-00	Input type		
F3-01	Car input type		
F3-02	Input select 1	19	
F3-03	Input select 2	22	
F3-04	Input select 3	23	
F3-05	Input select 4	24	
F3-06	Input select 5	25	
F3-07	Output select 1	0	
F3-08	Output select 2	11	
F3-09	Output select 3	12	
F4-00	Set Stop Floor1	OxFFFFFFF	
F4-01	Set Stop Floor2	OxFFFFFFF	
F4-02	TIM Stop Floor1	0x0000000	
F4-03	TIM Stop Floor2	0x0000000	
F4-04	Door Select A1	OxFFFFFFF	
F4-05	Door Select B1	OxFFFFFFF	
F4-06	Function Select	4	
F4-07	Function Select 2	0	
F5-00	Motor type		
F5-01	Poles		
F5-02	Rated Freq		
F5-03	Motor rated power		
F5-04	rated speed		
F5-05	V IN		
F5-06	L_phase		
F5-07	R_phase		
F5-08	Rated FLA		
F5-09	non-load current		

Parameter	Name	Default Value	Set Value
F5-10	slip frequency	1.3HZ	
F6-00	Carrier Freq	8HZ	
F6-02	Speed Zoom	100%	
F6-03	DirSel	0	
F6-04	Кр	220	
F6-05	КІ	110	
F7-00	PIMulEnable	0	
F7-01	PI1 Range	0	
F7-02	PI2 Range	0	
F7-04	PI3 Range	0	
F7-05	Kp1	300	
F7-06	Kx1	200	
F7-07	Kp2	300	
F7-08	Kx2	200	
F7-11	КрЗ	300	
F7-12	КхЗ	200	
F8-00	Encoder PPR	8192	
F8-02	PG Type	0	
F9-00	Max Torq Comp	0%	
F9-01	SPD SourceSel	2	
F9-03	Spderr Set	10%	
F9-11	Load Comp Enable	0	
F9-13	Load Source Sel	0	
F9-14	Fan Mode	1	
F9-19	UP Comp Bias	0	
F9-20	DOWN Comp Bias	0	
F9-21	FULL Comp Pro	100%	
FA-00	Strat KP	30	
FA-01	Stra tKI	750	
FA-08	PLKP	3600	
FA-09	PL Time	900ms	
FA-11	Integral Gain	800	
FA-12	Flux Gain	125	
A0-00	Language Sel	0	
A0-01	User Password	000000	
A0-02	Factory password		
A0-03	Set Quick Menu	000000	
A0-04	Contrast	5	

Table F2.1 Controller Parameters & Factory Setting List (Cont'd)

Please make sure all door zone, terminal, limit, final limit signals are correctly connected & tested before integrated controller perform the hoistway parameter learning process.

125

Appendix 4 Motor Initial Angle Static Tuning Flowchart

- 2.
- 1. This function is only valid for integrated controller with MU-V5 board
 - Before following procedures below, please make sure the integrated controller logic program version is 6014 or above, and drive program version is 52 or above. Otherwise this function is not supported.
 - 3. Before following procedures below, please fill in the machine basic parameters (F5) and PG interface card parameters (F8). Please set the machine tuning mode to static tuning.

